
© DEC 2025 | IRE Journals | Volume 9 Issue 6 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I6-1712881

IRE 1712881 ICONIC RESEARCH AND ENGINEERING JOURNALS 1416

Developing Tindar: A Native Arabic Programming

Language

ABD ALROOF S. ALMOGADMI1, SUMAIA A. ELTOMI 2, MURAD S. BAGHNI 3
1,2,3 Department, of Electronic Engineering, College of Industrial Technology, Misurata, Libya

Abstract- This paper introduces Tindar, a new Arabic

programming language designed to ease programming

education and computing interaction for Arabic

speakers. Tindar features a simple, extensible structure

supporting fundamental programming concepts, object-

oriented programming, and functional programming

features. Its architecture comprises a parser, syntactic

analyzer, code generator, and virtual machine.

Implemented in Rust for speed and security, the Tindar

compiler outperforms Python in performance tests and is

cross-platform compatible. This work emphasizes the

significance of culturally and linguistically relevant

computing interfaces, addressing the linguistic and

technical challenges of integrating Tindar with modern

development environments and offering practical

solutions.

Index Terms- Arabic programming language, Compiler

design, Extensibility, Language integration.

I. INTRODUCTION

Programming languages constitute a fundamental

pillar of modern technological infrastructure,

serving as the primary tool through which

developers create software and applications that

permeate nearly every aspect of daily life. Since the

advent of computing, programming languages have

evolved rapidly in response to growing user

demands. However, this evolution has been largely

confined to English-based programming languages,

leaving other linguistic communities marginalized in

this critical domain [1]. Despite advancements in

computing speed and storage, the fundamental

principles of language design remain consistent.

Although language design is a broad field, the

methodologies and resulting compiler structures,

from early COBOL translators to modern JavaScript

compilers, share common traits [2][3]. Despite

continuous technical advancements, the persistent

dominance of English in most programming

languages has created a significant linguistic and

cognitive gap for non-English-speaking

communities. This growing disparity has negatively

impacted learning accessibility and inclusivity,

particularly in the Arab world, where Arabic-

language educational resources and localized

programming tools remain relatively scarce and

underdeveloped [3]. Developing an Arabic

programming language is more than translation—

it’s a strategic step to empower Arabic speakers to

engage with computing in their native language. It

reinforces linguistic identity in tech, promotes

Arabic digital content, and supports programming

education in Arabic-speaking institutions, especially

at foundational levels [4].

II. LANGUAGE EVOLUTION

Since the early days of computing, programmers

have developed numerous programming languages.

Despite exponential improvements in computer

speed and storage, the core principles of language

design remain largely consistent. While language

design is broad, its methodologies are relatively

limited, and compilers, from early COBOL to

modern JavaScript compilers, share many

similarities.

Fig 1. Guide to Creating Languages.

Figure 1 depicts source code transforming into

machine code, illustrating compiler evolution and

the lasting principles of modern compiler

architecture [5].

1. Arabic Programming Gap

The established translation from source code to

machine code reveals a structural bias: English's

prevalence in programming hinders Arabic

speakers.

© DEC 2025 | IRE Journals | Volume 9 Issue 6 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I6-1712881

IRE 1712881 ICONIC RESEARCH AND ENGINEERING JOURNALS 1417

• Language Barrier: Many Arabic-speaking

beginners face challenges with programming

languages rooted in English, hindering their

entry into the field [6].

• Structural Complexity: Some existing Arabic

programming languages suffer from complex

syntax, which makes it hard for beginners to

learn and grasp fundamental concepts.

• Limited Integration: Current Arabic-based

languages face difficulties integrating with

other tools and languages, complicating the

development process and increasing challenges

for programmers.

• Low Efficiency: Some languages lack

performance and usability, negatively affecting

program execution speed and consuming

system resources excessively.

2. Compiler Workflow Stages

The Arabic programming gap extends beyond

language to encompass the process of transforming

source code into executable instructions via a

compiler's sequential stages [5].

A. Pre-processing

Pre-processing modifies source code prior to

compilation, managing directives like C/C++

#include and #define for inclusion or macros. Rust

employs advanced declarative macros, while Python

and JavaScript limit pre-processing to maintain

simplicity and interactivity.

B. Lexical Analysis

Lexical analysis scans source code, converting

character streams into tokens (keywords, identifiers,

numbers, symbols) while ignoring spaces and

comments. These tokens form the basis for syntactic

analysis [5][7]. Figure 2 shows the process.

Fig 2. Lexical analysis process

C. Syntax Analysis (Parser)

Syntax analysis, or parsing, checks if token

sequences from lexical analysis conform to context-

free grammar. If syntactically correct, the parser

produces an Abstract Syntax Tree (AST) that

represents the program's logical structure, omitting

elements like parentheses and semicolons that are

irrelevant for subsequent stages such as code

generation. The syntax tree is shown in figure 3 [8].

Fig 3. Syntax tree

D. Code Generation

In the final stage, code generation converts the

Abstract Syntax Tree (AST) into executable

instructions. Designers may target native code for

speed or virtual code for portability. Bytecode,

introduced in the 1960s, ensures cross-platform

execution without recompilation, addressing

portability concerns.

E. Run Time

After compilation, the program enters the run-time

phase, executing either natively through the OS or

within a virtual machine. This phase provides

services like garbage collection and error handling.

Compiled languages like Go embed run-time code,

while interpreted languages like Java and Python

depend on virtual machine run-time environments.

3. From Source to Execution

Programming languages employ diverse methods to

convert source code into executable programs.

Virtual Machines offer portability and flexibility,

but sacrifice performance. Languages like C rely on

compatible compilers for portability. Tree-walk

© DEC 2025 | IRE Journals | Volume 9 Issue 6 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I6-1712881

IRE 1712881 ICONIC RESEARCH AND ENGINEERING JOURNALS 1418

interpreters facilitate static analysis and early error

detection, though their slow speed restricts them to

smaller projects. Transpilers enable cross-platform

development by converting code between

languages, as demonstrated by TypeScript's

conversion to JavaScript [5].

III. RELATED WORK

This section reviews key academic studies on

programming language development that inform our

approach and provide foundational insights.

A. Arabic Languages Development

The study in [9] identified the lack of Arabic

programming languages as a key barrier for Arabic-

speaking students. To address this, the researchers

developed Alf, an Arabic programming language

that translates into C++ and includes essential

programming concepts. Their findings indicate that

using Arabic-based programming languages

enhances comprehension, facilitates native-language

learning, and promotes technical education within

Arabic-speaking communities.

Phoenix, an object-oriented Arabic programming

language using Arabic syntax and vocabulary, was

detailed in [10]. Its compiler includes a pre-

processor, scanner, parser, semantic analyzer, code

generator, and linker. Comparative experiments

showed Phoenix's strengths over C# in functions,

loops, and arithmetic, but its portability is limited to

Windows.

APL, an Arabic educational programming language,

uses GPT-based Large Language Models to

translate Arabic code into Python via prompt

engineering [11]. The system—comprising a Python

library, learning interface, and runtime

environment—demonstrates that LLMs can function

as natural-language compilers. By reducing

language barriers, APL enhances self-learning and

makes programming concepts more accessible to

Arabic speakers.

B. Other Languages Development

The "Hela" language, designed to resemble Sinhala,

aimed to simplify programming education [12]. Its

Java compiler comprised command-line tools, a

preprocessor, lexer, and parser. A user survey

indicated that Hela was more beginner-friendly and

had greater natural language resemblance but was

less effective for general programming and had less

clear loop structures.

In [13] a recent study introduced BASH-A, a

customizable educational platform that uses native

languages, such as Bengali, to teach programming.

The study found that BASH-A improved conceptual

understanding and reduced coding errors,

demonstrating the benefits of linguistic

personalization for beginner programmers from non-

English-speaking backgrounds.

TPD is an experimental programming language,

inspired by Turkish and supporting both imperative

and functional paradigms, designed for Turkish-

speaking high school students and novice

programmers [14]. Its integrated development

environment compiles TPD code into Java,

leveraging users' native language proficiency to ease

the learning of fundamental programming concepts

in education.

IV. PROPOSED APPROACH

Tindar, initially designed for a simple Arabic

terminal emulator, was later generalized to expand

its use. Its syntax, inspired by C and JavaScript,

facilitates ease of transition for users familiar with

those languages. Features were prioritized and

implemented based on this broader applicability.

Tindar's core architecture, aligned with its

development stages, is illustrated in fig 4.

Fig 4. System architecture

Tindar execution starts from the main function ()ابدا

which organizes program flow and calls data

processing functions. The function contains the

© DEC 2025 | IRE Journals | Volume 9 Issue 6 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I6-1712881

IRE 1712881 ICONIC RESEARCH AND ENGINEERING JOURNALS 1419

عليكم" statement that prints اطبعس with a new "السلام

line.

1. Variables and Data Classification

For maintainable programs, understanding variables

and data types is key. Tindar supports both dynamic

and static typing, classifying data types into basic

types in table 1 and compound types in table 2.

Table 1. Primitive Data

Table 2. Composite data

Type Description Example

Array

Contains

mixed data

types

الأعداد: عرف

 [؛ 3, 2, 1مصفوفة>رقم< =]

Entity

Combines

data and

functions

 كيان موظف }اسم، عمر{؛

Set
Mixed data

types

عرف م :)رقم، نص، رقم(=

 (؛ 10، "مرحبا"، 10)

List
Key-Value

pairs

قائمة ل= "محمد": {عرف

 ؛ } 30، "علي": 20

2. Variable Declaration Methods

Variable declaration in Tindar can be performed in

two ways, as demonstrated in table 3.

Table 3. Variable Declarations

method Description Example

Explicit

Declaration

Data type is

stated

directly.

 = رقم ع: عرف

 ؛ 10

Implicit

Declaration

Compiler

infers type as

general.

 ؛ 10عرف ع =

method Description Example

Explicit

Declaration

Data type is

stated

directly.

 = رقم ع: عرف

 ؛ 10

Implicit

Declaration

Compiler

infers type as

general.

 ؛ 10عرف ع =

3. Key Concepts in Tindar

Tindar introduces a set of core principles that

constitute the structural foundation of modern

programming languages. It emphasizes variable

declaration in multiple forms and offers diverse

arithmetic, logical, and bitwise operators to ensure

computational efficiency. The language supports

dynamic control flow through conditional constructs

والا) Moreover, it .(بينما) and iterative loops (لو,

employs reusable functional units, defined using the

keyword (دالة) and returning values via (أعد). Finally,

Tindar provides a flexible architecture for creating

data structures across entities, defined by the

keyword (كيان), followed by the object name and a

list of its properties, allowing data structures to be

organized in a systematic and extensible manner.

V. TINDAR IMPLEMENTATION

Tindar was developed in Rust due to its speed,

memory safety, and modern compiler. Rust's

combination of low-level efficiency and high-level

safety, enforced by its ownership model, type

system, and tools like Cargo, provides a robust

foundation for a reliable and efficient compiler. The

implementation process is detailed in fig 5.

Fig 5. Execution strategy

A. Compiler

The compiler processes Tindar source code in the

following stages:

Type Description Example

Number Integer and float
 = رقم العدد: عرف

 ؛ 10

Boolean True or False
منطقي الحالة: عرف

 = صح؛

Text Strings
عرف الرسالة: نص =

 "السلام عليكم!"؛

General Accepts any value
 = عام القيمة: عرف

 ؛ 10

© DEC 2025 | IRE Journals | Volume 9 Issue 6 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I6-1712881

IRE 1712881 ICONIC RESEARCH AND ENGINEERING JOURNALS 1420

• Lexical Analysis

The lexical analyzer scans source code, verifying

each character (except those in quotations) conforms

to Arabic. Valid characters produce lexical units;

otherwise, an error is reported.

• Syntactic Analysis

The syntactic parser checks the grammatical

correctness of Tindar sentences and displays an

error message when a syntactic error is detected.

Tindar parser uses top-down parsing with Pratt

parsing for efficient expression handling and to

avoid left recursion issues. Fig 6 demonstrates the

Pratt parsing algorithm's application to mathematical

precedence [5][15].

Fig 6. Pratt parsing algorithm

• Semantic Analysis

During semantic analysis, the compiler checks type

consistency to ensure valid operations, such as

preventing the addition of numbers to strings.

It verifies that variables are declared before use and

communicates with the virtual machine to generate

instructions. Rust code defines operations like

addition in this phase. Finally, a virtual entry

function invokes the main function and terminates

execution.

B. Virtual Machine

The virtual machine is a critical component for

performance and efficiency, executing instructions

step-by-step. Rust code handles arithmetic

operations and manages runtime issues.

C. Runtime

The virtual machine's operation hinges on a set of

runtime services:

• Data Representation

Tindar uses NaN-boxing for efficient data

representation on 64-bit systems, a common strategy

in dynamic languages like JavaScript Fig 7 [5]. For

other word sizes, it employs tagged counters, which

utilize extra bits to distinguish data types within a

unified memory space.

Fig 7: Nan-boxing method

• Memory Management

Mark-and-Sweep garbage collector is used to

manage memory efficiently.

• Rust Integration

To enable interoperability, Rust code is compiled

into dynamic libraries that the virtual machine loads

at runtime.

VI. RESULTS AND DISCUSSION

This section presents and discusses the experimental

results evaluating Tindar's performance.

1. Code testing

Tindar's versatility is demonstrated through shape-

drawing, GUI graphics, and object-oriented

programming examples. A simple shape-drawing

program, as seen in Figure 8, uses textual characters

© DEC 2025 | IRE Journals | Volume 9 Issue 6 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I6-1712881

IRE 1712881 ICONIC RESEARCH AND ENGINEERING JOURNALS 1421

to render a left-aligned triangle, illustrating basic

programming concepts. Figure 9 showcases Tindar's

GUI capabilities, rendering geometric shapes on a

colored canvas. Finally, Figure 10 confirms a

successful object-oriented linked list

implementation with dynamically constructed node

relationships. These examples highlight Tindar's

suitability for teaching and application development,

supporting structured, graphical, and object-oriented

paradigms.

Fig 8. Drawing a triangle

 Fig 9. Drawing shapes

Fig 10. Linked list execution

2. Portability Testing

Tindar's portability was tested using a Fibonacci

function to measure performance across operating

systems. Table 4 shows the execution speeds on

different platforms

Table 4. Run-Time by Device and OS

Device Processor OS Run Time (s)

Toshipa i3 G3 Linux 26 – 20

Toshipa i3 G3 Win 10 33

Hp i5 G3 Win10 32 – 34

Lenovo i3 G2 Linux 20 -23

3. Syntax Comparison

Tindar's syntax resembles that of C-family

languages Table 5, potentially easing adoption and

learning.

Table 5. Tindar vs General Languages: Syntax

Feature Tindar Python / Rust / G0

Declaration = ؛ 6عرف س

x := 6

Let x = 6;

x = 6

Conditions < 0لو س {..}

if x > 0 {..}

if x > 0 {..}

if x > 0:

Loops < 5بينما س {..}

for i:=0;i<5;i++{}

for i in 0..5{..}

for i in Range (5)

{}

Arrays [= ؛ 1,2عرف م]

arr := []int{1, 2}

let arr = [1,2];

arr = [1,2]

Comments # تعليق

//comment

//comment

#comment

4. Performance

Tindar’s performance was benchmarked against

Python using a Fibonacci sequence [16], with

execution times presented in table 6.

Table 7. Performance: Tindar vs Python

Device Processor OS
Run Time (s)

Tindar Python

Toshipa i3 G3 Linux 20 – 26 45

Toshipa i3 G3 Win10 33 51

Hp i5 G3 Win10 32 – 34 47 – 52

VII. CONCLUSION

The Tindar programming language showed that

usability, scalability, and platform compatibility are

as crucial to success as performance. Its features,

like automatic memory management and cross-

platform support, improved accessibility for new

programmers. Effective design demands not only

efficient syntax and algorithms but also structural

elements that enhance the developer experience.

Sustaining Tindar's growth requires developing

robust libraries, improving tool integration, and

promoting educational adoption to foster a strong

user community.

© DEC 2025 | IRE Journals | Volume 9 Issue 6 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I6-1712881

IRE 1712881 ICONIC RESEARCH AND ENGINEERING JOURNALS 1422

REFERENCES

[1] M. M. Khalatia and T. A. H. Al-Romany,

"Artificial Intelligence Development and

Challenges (Arabic Language as a Model),"

International Journal of Innovation, Creativity

and Change, vol. 13, no. 5, pp. ,2020.

[Online]. Available: www.ijicc.net

[2] Thain, "Introduction to Compilers and

Language Design", 2nd ed. Notre Dame, IN,

USA: Douglas Thain, 2023. ISBN: 979-8-655-

18026-0.[Online].Available:

http://compilerbook.org

[3] Z. Alyafeai and M. S. Al-Shaibani, "ARBML:

Democratizing Arabic Natural Language

Processing Tools," in *Proc. 2nd Workshop on

NLP Open Source Software (NLP-OSS)*, pp.

8–13, Virtual Conference, Nov. 19, 2020.

[Online].Available:

https://aclanthology.org/2020.nlposs-1.2/

[4] M. A. Mohammed, S. H. M. Zeebaree, S.

Mostafa, and M. K. A. Ghani, "Designing and

Implementing an Arabic Programming

Language for Teaching Pupils," J. Southwest

Jiaotong Univ., vol. 54, no. 3, pp, Jun. 2019.

[Online]Available:

https://www.researchgate.net/publication/3338

58707

[5] R. Nystrom, *Crafting Interpreters*, 1st ed.

[Online]. Available:

https://craftinginterpreters.com. © 2015–2020.

[6] A. ElSabagh, S. S. Azab, and H. A. Hefny, "A

comprehensive survey on Arabic text

augmentation: approaches, challenges, and

applications," *Neural Comput. Appl.*, vol.

37, pp. 7015–7048, 2025, doi:

10.1007/s00521-025-11002-

z.[Online]Available:

https://doi.org/10.1007/s00521-025-11020-z

[7] W. Kania and R. Wajman, "CKRIPT: A new

scripting language for web applications,"

IAPGOŚ, vol. 2, pp.

2022.[Online]Available:

(PDF) CKRIPT: A NEW SCRIPTING

LANGUAGE FOR WEB APPLICATIONS

[8] GeeksforGeeks, “Introduction to Syntax

Analysis in Compiler Design,”

GeeksforGeeks, 27-Aug-2025. [Online].

Available:

https://www.geeksforgeeks.org/compiler-

design/introduction-to-syntax-analysis-in-

compiler-design/

[Accessed: 29-Oct-2025].

[9] H. H. A. Razaq, A. S. Gaser, M. A.

Mohammed, E. T. Yassen, S. A. Soltana, S. R.

M. Zeebaree, D. A. Mahmood, M. K. A.

Ghani, and R. N. Farhan, "Designing and

implementing an Arabic programming

language for teaching pupils," *J. Southwest

Jiaotong Univ.*, vol. 54, no. 3, pp2019,

[Online]Available:

https://jsju.org/index.php/journal/article/view/

289

[10] Y. Bassil, “Phoenix – The Arabic Object-

Oriented Programming Language,”

International Journal of Computer Trends and

Technology (IJCTT), vol. 67, no. 2, pp. 1–7,

Feb. 2019. [Online]. Available:

https://arxiv.org/pdf/1907.05871

[11] S. Sibaee, O. Najar, L. Ghouti, and A. Koubaa,

“LLMs as Scribe for Arabic Programming

Language,” arXiv preprint

arXiv:2403.10876v1 [cs.SE], Prince Sultan

University, KSA, Mar. 2024. [Online].

Available: https://arxiv.org/abs/2403.16087

[12] R. Yasasri and D. Karunarathna, “Helaa: A

Sinhala Language–Based Programming

Language,” Proc. of the International

Conference, University of Colombo School of

Computing, Sri Lanka, Aug. 2023. [Online].

Available:https://www.researchgate.net/public

ation/372946071

[13] VIJAYGANESH, S. Nandwana, and R.

Kumar, “Breaking the Language Barriers of

Programming: An All-Inclusive and

Personalizable Programming Platform —

BASH-A,” International Journal of Recent

Research and Review, vol. XVII, no. 2, pp.

xx–xx, Jun. 2024. [Online]. Available:

https://www.ijrrr.com/papers/June2024/Breaki

ng-the-Language-Barriers-of-

Programming.pdf

[14] S. Tutar, C. Bozsahin, and H. Oguztuzun,

“TPD: An Educational Programming

Language Based on Turkish Syntax,” Dept. of

Computer Engineering, Middle East Technical

University, Ankara, Turkey. [Online].

Available:

https://www.researchgate.net/publication/3016

87920

[15] M. Janiczek, “Demystifying Pratt Parsers,”

Blog post, Jul. 3, 2023. [Online]. Available:

https://martin.janiczek.cz/2023/07/03/demystif

ying-pratt-parsers.html

© DEC 2025 | IRE Journals | Volume 9 Issue 6 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I6-1712881

IRE 1712881 ICONIC RESEARCH AND ENGINEERING JOURNALS 1423

[16] S. M. Farooq and S. H. Shabbeer Basha, “A

Study on Fibonacci Series Generation

Algorithms,” in Proc. 3rd Int. Conf. on

Advanced Computing and Communication

Systems (ICACCS), Coimbatore, India, Jan.

2016. [Online]. Available:

https://www.academia.edu/96152241

