© DEC 2025 | IRE Journals | Volume 9 Issue 6 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV916-1712881

Developing Tindar: A Native Arabic Programming

Language

ABD ALROOF S. ALMOGADMI', SUMAIA A. ELTOMI? MURAD S. BAGHNI?
.23 Department, of Electronic Engineering, College of Industrial Technology, Misurata, Libya

Abstract- This paper introduces Tindar, a new Arabic
programming language designed to ease programming
education and computing interaction for Arabic
speakers. Tindar features a simple, extensible structure
supporting fundamental programming concepts, object-
oriented programming, and functional programming
features. Its architecture comprises a parser, syntactic
analyzer, code generator, and virtual machine.
Implemented in Rust for speed and security, the Tindar
compiler outperforms Python in performance tests and is
cross-platform compatible. This work emphasizes the
significance of culturally and linguistically relevant
computing interfaces, addressing the linguistic and
technical challenges of integrating Tindar with modern
development environments and offering practical
solutions.

Index Terms- Arabic programming language, Compiler
design, Extensibility, Language integration.

L INTRODUCTION

Programming languages constitute a fundamental
pillar of modern technological infrastructure,
serving as the primary tool through which
developers create software and applications that
permeate nearly every aspect of daily life. Since the
advent of computing, programming languages have
evolved rapidly in response to growing user
demands. However, this evolution has been largely
confined to English-based programming languages,
leaving other linguistic communities marginalized in
this critical domain [1]. Despite advancements in
computing speed and storage, the fundamental
principles of language design remain consistent.
Although language design is a broad field, the
methodologies and resulting compiler structures,
from early COBOL translators to modern JavaScript
compilers, share common traits [2][3]. Despite
continuous technical advancements, the persistent
dominance of English in most programming
languages has created a significant linguistic and
cognitive gap for non-English-speaking
communities. This growing disparity has negatively
impacted learning accessibility and inclusivity,
particularly in the Arab world, where Arabic-

IRE 1712881

language educational resources and localized
programming tools remain relatively scarce and
underdeveloped [3]. Developing an Arabic
programming language is more than translation—
it’s a strategic step to empower Arabic speakers to
engage with computing in their native language. It
reinforces linguistic identity in tech, promotes
Arabic digital content, and supports programming
education in Arabic-speaking institutions, especially
at foundational levels [4].

IL. LANGUAGE EVOLUTION

Since the early days of computing, programmers
have developed numerous programming languages.
Despite exponential improvements in computer
speed and storage, the core principles of language
design remain largely consistent. While language
design is broad, its methodologies are relatively
limited, and compilers, from early COBOL to
modern JavaScript compilers, share many
similarities.

@

4
I
\}W‘Cl goot HIOMAEVEL LANGUAOE YTECoNE MACHING COXt /

Fig 1. Guide to Creating Languages.

Figure 1 depicts source code transforming into
machine code, illustrating compiler evolution and
the lasting principles of modern compiler
architecture [5].

1. Arabic Programming Gap

The established translation from source code to
machine code reveals a structural bias: English's
prevalence in programming hinders Arabic
speakers.

ICONIC RESEARCH AND ENGINEERING JOURNALS 1416

© DEC 2025 | IRE Journals | Volume 9 Issue 6 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV916-1712881

e Language Barrier: Many Arabic-speaking
beginners face challenges with programming
languages rooted in English, hindering their
entry into the field [6].

e Structural Complexity: Some existing Arabic
programming languages suffer from complex
syntax, which makes it hard for beginners to
learn and grasp fundamental concepts.

e Limited Integration: Current Arabic-based
languages face difficulties integrating with
other tools and languages, complicating the
development process and increasing challenges
for programmers.

e Low Efficiency: Some languages lack
performance and usability, negatively affecting
program execution speed and consuming
system resources excessively.

2. Compiler Workflow Stages
The Arabic programming gap extends beyond
language to encompass the process of transforming
source code into executable instructions via a
compiler's sequential stages [5].

A. Pre-processing

Pre-processing modifies source code prior to
compilation, managing directives like C/C++
#include and #define for inclusion or macros. Rust
employs advanced declarative macros, while Python
and JavaScript limit pre-processing to maintain
simplicity and interactivity.

B. Lexical Analysis

Lexical analysis scans source code, converting
character streams into tokens (keywords, identifiers,
numbers, symbols) while ignoring spaces and
comments. These tokens form the basis for syntactic
analysis [5][7]. Figure 2 shows the process.

Fig 2. Lexical analysis process

IRE 1712881

C. Syntax Analysis (Parser)

Syntax analysis, or parsing, checks if token
sequences from lexical analysis conform to context-
free grammar. If syntactically correct, the parser
produces an Abstract Syntax Tree (AST) that
represents the program's logical structure, omitting
elements like parentheses and semicolons that are
irrelevant for subsequent stages such as code
generation. The syntax tree is shown in figure 3 [8].

i {a<10) return “Working";
relum "Not Working™ |

a | { 10 J ;lWorlcing J

Fig 3. Syntax tree

D. Code Generation

In the final stage, code generation converts the
Abstract Syntax Tree (AST) into executable
instructions. Designers may target native code for
speed or virtual code for portability. Bytecode,
introduced in the 1960s, ensures cross-platform
execution without recompilation, addressing

portability concerns.

E. Run Time

After compilation, the program enters the run-time
phase, executing either natively through the OS or
within a virtual machine. This phase provides
services like garbage collection and error handling.
Compiled languages like Go embed run-time code,
while interpreted languages like Java and Python
depend on virtual machine run-time environments.

3. From Source to Execution

Programming languages employ diverse methods to
convert source code into executable programs.
Virtual Machines offer portability and flexibility,
but sacrifice performance. Languages like C rely on
compatible compilers for portability. Tree-walk

ICONIC RESEARCH AND ENGINEERING JOURNALS 1417

© DEC 2025 | IRE Journals | Volume 9 Issue 6 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV916-1712881

interpreters facilitate static analysis and early error
detection, though their slow speed restricts them to
smaller projects. Transpilers enable cross-platform
development by converting code between
languages, as demonstrated by TypeScript's
conversion to JavaScript [5].

I1I. RELATED WORK

This section reviews key academic studies on
programming language development that inform our
approach and provide foundational insights.

A. Arabic Languages Development

The study in [9] identified the lack of Arabic
programming languages as a key barrier for Arabic-
speaking students. To address this, the researchers
developed Alf, an Arabic programming language
that translates into C++ and includes essential
programming concepts. Their findings indicate that
using Arabic-based programming languages
enhances comprehension, facilitates native-language
learning, and promotes technical education within
Arabic-speaking communities.

Phoenix, an object-oriented Arabic programming
language using Arabic syntax and vocabulary, was
detailed in [10]. Its compiler includes a pre-
processor, scanner, parser, semantic analyzer, code
generator, and linker. Comparative experiments
showed Phoenix's strengths over C# in functions,
loops, and arithmetic, but its portability is limited to
Windows.

APL, an Arabic educational programming language,
uses GPT-based Large Language Models to
translate Arabic code into Python via prompt
engineering [11]. The system—comprising a Python
library, learning interface, and runtime
environment—demonstrates that LLMs can function
as natural-language compilers. By reducing
language barriers, APL enhances self-learning and
makes programming concepts more accessible to
Arabic speakers.

B. Other Languages Development

The "Hela" language, designed to resemble Sinhala,
aimed to simplify programming education [12]. Its
Java compiler comprised command-line tools, a
preprocessor, lexer, and parser. A user survey
indicated that Hela was more beginner-friendly and
had greater natural language resemblance but was

IRE 1712881

less effective for general programming and had less
clear loop structures.

In [13] a recent study introduced BASH-A, a
customizable educational platform that uses native
languages, such as Bengali, to teach programming.
The study found that BASH-A improved conceptual
understanding and reduced coding errors,
demonstrating the benefits of linguistic
personalization for beginner programmers from non-
English-speaking backgrounds.

TPD is an experimental programming language,
inspired by Turkish and supporting both imperative
and functional paradigms, designed for Turkish-
speaking high school students and novice
programmers [14]. Its integrated development
environment compiles TPD code into Java,
leveraging users' native language proficiency to ease
the learning of fundamental programming concepts
in education.

Iv. PROPOSED APPROACH

Tindar, initially designed for a simple Arabic
terminal emulator, was later generalized to expand
its use. Its syntax, inspired by C and JavaScript,
facilitates ease of transition for users familiar with
those languages. Features were prioritized and
implemented based on this broader applicability.
Tindar's core architecture, aligned with its
development stages, is illustrated in fig 4.

S
Design Language
Structure

pep—

Write Language '
Grammer

Pian For Adding Language |
< ‘ Feature [
Add Code To Existing Add Code To Compiler To
Interpreter To Support Support Feature

"> TestThe Featwre '

Fig 4. System architecture

Tindar execution starts from the main function ()!
which organizes program flow and calls data
processing functions. The function contains the

ICONIC RESEARCH AND ENGINEERING JOURNALS 1418

© DEC 2025 | IRE Journals | Volume 9 Issue 6 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV916-1712881

bl statement that prints "aSde S with a new
line.

{ $(7pSe Al k) 1 () gl A2

1. Variables and Data Classification

For maintainable programs, understanding variables
and data types is key. Tindar supports both dynamic
and static typing, classifying data types into basic
types in table 1 and compound types in table 2.

Table 1. Primitive Data

Type Description Example
= a8, a2l
Number | Integer and float g u:;;
R TI
Boolean | True or False i . =
.c.;a =
. = st Al Gy
Text Strings]aSde. WS
= ale Al o pe
General | Accepts any value 10
Table 2. Composite data
Type Description | Example
Contains . .
. 2alac) e
Array | mixed data T
{[3.2.1] = <@ >4 siams
types
Combines
Entity | data and ¢ e canl} Cala ga LS
functions
Set Mixed data | = (s cuad af)): o e
types ¢(10 "L <" ¢10)
List Key-Value | :"xeas" JAE =] iy
pairs ¢£30:"Jde" 20

2. Variable Declaration Methods
Variable declaration in Tindar can be performed in
two ways, as demonstrated in table 3.

Table 3. Variable Declarations

. Compiler
Implicit infers type as (10=¢ <«
Declaration yp) g
general.

3. Key Concepts in Tindar

Tindar introduces a set of core principles that
constitute the structural foundation of modern
programming languages. It emphasizes variable
declaration in multiple forms and offers diverse
arithmetic, logical, and bitwise operators to ensure
computational efficiency. The language supports
dynamic control flow through conditional constructs
(Y5 ,5) and iterative loops (Lir). Moreover, it
employs reusable functional units, defined using the
keyword (4)2) and returning values via (2=). Finally,
Tindar provides a flexible architecture for creating
data structures across entities, defined by the
keyword (0LS), followed by the object name and a
list of its properties, allowing data structures to be
organized in a systematic and extensible manner.

V. TINDAR IMPLEMENTATION

Tindar was developed in Rust due to its speed,
memory safety, and modern compiler. Rust's
combination of low-level efficiency and high-level
safety, enforced by its ownership model, type
system, and tools like Cargo, provides a robust
foundation for a reliable and efficient compiler. The
implementation process is detailed in fig 5.

Source Code

Compiler

L

<

Semantic - Lexical
[Analysis] LParsmg] [analysis J
Byte Code Virtual
Generation v Machine
Program
Execution
v L -
: Instruction Memory
e Ha”d"ng] [Execution J [Monitoring J

method Description Example
Datat i . .
Explicit | o PEB s e e
. stated
Declaration . 10
directly.
il
Implicit .C(;mplt ° 10 G
infer: a ¢10 =
Declaration ers type as g
general.
method Description Example
.. Data t i . .
Explicit ata ype 1s =) g e
. stated
Declaration . 10
directly.

IRE 1712881

ICONIC RESEARCH AND ENGINEERING JOURNALS

Fig 5. Execution strategy
A. Compiler

The compiler processes Tindar source code in the
following stages:

1419

© DEC 2025 | IRE Journals | Volume 9 Issue 6 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV916-1712881

e Lexical Analysis

The lexical analyzer scans source code, verifying
each character (except those in quotations) conforms
to Arabic. Valid characters produce lexical units;
otherwise, an error is reported.

{ fjae 1O Al

pln compiler/exanples/and.pln:2:5:[j]ogss0 pub 6

e Syntactic Analysis

The syntactic parser checks the grammatical
correctness of Tindar sentences and displays an
error message when a syntactic error is detected.

{ (Db JO 4

Tindar parser uses top-down parsing with Pratt
parsing for efficient expression handling and to

avoid left recursion issues. Fig 6 demonstrates the
Pratt parsing algorithm's application to mathematical
precedence [5][15].

‘ Parse a prefix expr into left

‘ Look at next token

No token |

E :‘ero an operator |

| A known o;peralor op

‘ Put iIts precedence into prec

{prec = prectimit |
'proc > precLimit

___V

(Return left 1 Parse pratt(prec) into right

‘ feft = Binop(left,op,right)

Fig 6. Pratt parsing algorithm

. Semantic Analysis

During semantic analysis, the compiler checks type
consistency to ensure valid operations, such as
preventing the addition of numbers to strings.

{ <10 + "aSMaskl 3Ol Al

IRE 1712881

It verifies that variables are declared before use and
communicates with the virtual machine to generate
instructions. Rust code defines operations like
addition in this phase. Finally, a virtual entry
function invokes the main function and terminates
execution.

B. Virtual Machine

The virtual machine is a critical component for
performance and efficiency, executing instructions
step-by-step. Rust code handles arithmetic
operations and manages runtime issues.

C. Runtime
The virtual machine's operation hinges on a set of
runtime services:

e Data Representation

Tindar uses NaN-boxing for efficient data
representation on 64-bit systems, a common strategy
in dynamic languages like JavaScript Fig 7 [5]. For
other word sizes, it employs tagged counters, which
utilize extra bits to distinguish data types within a
unified memory space.

Null, boolean and int repr

01 e Ti]7]110] - Tolo) mat
O 0[0)-, - 177} true
2% [710] e

Fig 7: Nan-boxing method

e Memory Management
Mark-and-Sweep garbage collector is used to
manage memory efficiently.

e Rust Integration

To enable interoperability, Rust code is compiled
into dynamic libraries that the virtual machine loads
at runtime.

VI RESULTS AND DISCUSSION

This section presents and discusses the experimental
results evaluating Tindar's performance.

1. Code testing

Tindar's versatility is demonstrated through shape-
drawing, GUI graphics, and object-oriented
programming examples. A simple shape-drawing
program, as seen in Figure 8, uses textual characters

ICONIC RESEARCH AND ENGINEERING JOURNALS 1420

© DEC 2025 | IRE Journals | Volume 9 Issue 6 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV916-1712881

to render a left-aligned triangle, illustrating basic
programming concepts. Figure 9 showcases Tindar's
GUI capabilities, rendering geometric shapes on a
colored canvas. Finally, Figure 10 confirms a
object-oriented linked list
implementation with dynamically constructed node
relationships. These examples highlight Tindar's
suitability for teaching and application development,
supporting structured, graphical, and object-oriented
paradigms.

successful

Fig 8. Drawing a triangle

Fig 9. Drawing shapes

Fig 10. Linked list execution

2. Portability Testing

Tindar's portability was tested using a Fibonacci
function to measure performance across operating
systems. Table 4 shows the execution speeds on
different platforms

Table 4. Run-Time by Device and OS

Device | Processor OS Run Time (s)
Toshipa i3 G3 Linux 20-26
Toshipa i3 G3 Win 10 33

Hp i5 G3 Winl0 34-32
Lenovo i3 G2 Linux 23-20

IRE 1712881

3. Syntax Comparison

Tindar's syntax resembles that of C-family
languages Table 5, potentially easing adoption and
learning.

Table 5. Tindar vs General Languages: Syntax

Feature Tindar Python / Rust / GO

X:=06
6= e | Letx=6;
x=6

Declaration

ifx>0 {.}
{30>0e 8 [ifx>0 {.}
if x> 0:

Conditions

for 1:=0;i<5;1++{}
foriin 0..5{..}
for i in Range (5)
{}

Loops {.}5> o lain

arr := []int{1, 2}
Arrays 1,2]=p e | letarr=[1,2];
arr =[1,2]

//comment
Comments Gal=# | //comment
#comment

4. Performance

Tindar’s performance was benchmarked against
Python using a Fibonacci sequence [16], with
execution times presented in table 6.

Table 7. Performance: Tindar vs Python

Run Time (s)

Device | Processor oS
Tindar | Python
Toshipa i3 G3 Linux | 20-26 45
Toshipa i3 G3 Winl0 33 51
Hp i5G3 Winl0 | 32-34 | 5247

VIL CONCLUSION

The Tindar programming language showed that
usability, scalability, and platform compatibility are
as crucial to success as performance. Its features,
like automatic memory management and cross-
platform support, improved accessibility for new
programmers. Effective design demands not only
efficient syntax and algorithms but also structural
elements that enhance the developer experience.
Sustaining Tindar's growth requires developing
robust libraries, improving tool integration, and
promoting educational adoption to foster a strong
user community.

ICONIC RESEARCH AND ENGINEERING JOURNALS 1421

(1]

(2]

(3]

(4]

(8]

IRE 1712881

© DEC 2025 | IRE Journals | Volume 9 Issue 6 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV916-1712881

REFERENCES

M. M. Khalatia and T. A. H. Al-Romany,
"Artificial Intelligence Development and
Challenges (Arabic Language as a Model),"
International Journal of Innovation, Creativity
and Change, vol. 13, no. 5, pp. ,2020.
[Online]. Available: www.ijicc.net

Thain, "Introduction to Compilers and
Language Design", 2nd ed. Notre Dame, IN,
USA: Douglas Thain, 2023. ISBN: 979-8-655-
18026-0.[Online].Available:
http://compilerbook.org

Z. Alyafeai and M. S. Al-Shaibani, "ARBML:
Democratizing Arabic Natural Language
Processing Tools," in *Proc. 2nd Workshop on
NLP Open Source Software (NLP-OSS)*, pp.
8-13, Virtual Conference, Nov. 19, 2020.
[Online].Available:
https://aclanthology.org/2020.nlposs-1.2/

M. A. Mohammed, S. H. M. Zeebaree, S.
Mostafa, and M. K. A. Ghani, "Designing and
Implementing an Arabic Programming
Language for Teaching Pupils," J. Southwest
Jiaotong Univ., vol. 54, no. 3, pp, Jun. 2019.
[Online]Available:
https://www.researchgate.net/publication/3338
58707

R. Nystrom, *Crafting Interpreters®, Ist ed.
[Online]. Available:
https://craftinginterpreters.com. © 2015-2020.
A. ElSabagh, S. S. Azab, and H. A. Hefny, "A
comprehensive survey on Arabic text
augmentation: approaches, challenges, and
applications," *Neural Comput. Appl.*, vol.
37, pp- 7015-7048, 2025, doi:
10.1007/s00521-025-11002-
z.[Online]Available:
https://doi.org/10.1007/s00521-025-11020-z
W. Kania and R. Wajman, "CKRIPT: A new
scripting language for web applications,”
IAPGOS, vol. 2, pp-
2022.[Online]Available:

(PDF) CKRIPT: A NEW SCRIPTING
LANGUAGE FOR WEB APPLICATIONS

GeeksforGeeks, “Introduction to Syntax
Analysis in Compiler Design,”
GeeksforGeeks, 27-Aug-2025. [Online].
Available:

https://www.geeksforgeeks.org/compiler-
design/introduction-to-syntax-analysis-in-
compiler-design/

[%]

[10]

[11]

[12]

[13]

[14]

ICONIC RESEARCH AND ENGINEERING JOURNALS

[Accessed: 29-Oct-2025].

H. H. A. Razaq, A. S. Gaser, M. A.
Mohammed, E. T. Yassen, S. A. Soltana, S. R.
M. Zeebaree, D. A. Mahmood, M. K. A.
Ghani, and R. N. Farhan, "Designing and
implementing an Arabic programming
language for teaching pupils,” *J. Southwest
Jiaotong Univ.*, vol. 54, no. 3, pp2019,
[Online]Available:
https://jsju.org/index.php/journal/article/view/
289

Y. Bassil, “Phoenix — The Arabic Object-
Oriented Programming Language,”
International Journal of Computer Trends and
Technology (IJCTT), vol. 67, no. 2, pp. 1-7,
Feb. 2019. [Online]. Available:
https://arxiv.org/pdf/1907.05871

S. Sibaee, O. Najar, L. Ghouti, and A. Koubaa,
“LLMs as Scribe for Arabic Programming

Language,” arXiv preprint
arXiv:2403.10876vl [cs.SE], Prince Sultan
University, KSA, Mar. 2024. [Online].

Available: https://arxiv.org/abs/2403.16087

R. Yasasri and D. Karunarathna, “Helaa: A
Sinhala Language—Based Programming
Language,” Proc. of the International
Conference, University of Colombo School of
Computing, Sri Lanka, Aug. 2023. [Online].
Available:https://www.researchgate.net/public
ation/372946071

VIJAYGANESH, S. Nandwana, and R.
Kumar, “Breaking the Language Barriers of
Programming: An All-Inclusive and
Personalizable Programming Platform —
BASH-A,” International Journal of Recent
Research and Review, vol. XVII, no. 2, pp.
xx—xX, Jun. 2024. [Online]. Available:
https://www.ijrrr.com/papers/June2024/Breaki
ng-the-Language-Barriers-of-

Programming.pdf
S. Tutar, C. Bozsahin, and H. Oguztuzun,
“TPD: An Educational = Programming

Language Based on Turkish Syntax,” Dept. of
Computer Engineering, Middle East Technical
University, Ankara, Turkey. [Online].
Available:
https://www.researchgate.net/publication/3016
87920

M. Janiczek, “Demystifying Pratt Parsers,”
Blog post, Jul. 3, 2023. [Online]. Available:
https://martin.janiczek.cz/2023/07/03/demystif
ying-pratt-parsers.html

1422

© DEC 2025 | IRE Journals | Volume 9 Issue 6 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV916-1712881

[16] S. M. Farooq and S. H. Shabbeer Basha, “A
Study on Fibonacci Series Generation
Algorithms,” in Proc. 3rd Int. Conf. on
Advanced Computing and Communication
Systems (ICACCS), Coimbatore, India, Jan.
2016. [Online]. Available:
https://www.academia.edu/96152241

IRE 1712881 ICONIC RESEARCH AND ENGINEERING JOURNALS 1423

