

A Literature Review on AI-Based Traffic Sign Recognition Systems

PRIYANKA PANDEY¹, SHIVANGI GUPTA², TRUPTI HUBLI³, IMPANA S⁴

^{1, 2, 3, 4}*Department of Artificial Intelligence and Data Science, BGS College of Engineering and Technology (VTU, Belagavi), Bangalore, Karnataka, India*

Abstract—Traffic Sign Recognition (TSR) is a fundamental component of intelligent transportation systems and Advanced Driver Assistance Systems (ADAS). Accurate detection and classification of traffic signs enable safer driving, reduce human error, and support autonomous vehicle decision-making. Recent advancements in artificial intelligence, particularly deep learning and computer vision, have significantly improved TSR performance. Techniques such as Convolutional Neural Networks (CNNs), attention-based architectures, hybrid classifiers, and lightweight transformer models enable real-time recognition even on embedded platforms. However, real-world deployment still faces challenges including environmental variability, occlusion, sign degradation, regional diversity, and computational constraints. This manuscript provides a detailed review of recent AI-based TSR approaches, analyzes their advantages and limitations, identifies research gaps, and outlines future directions toward robust, scalable, and real-time TSR systems.

Index Terms— Traffic Sign Recognition, Artificial Intelligence, Deep Learning, ADAS, Computer Vision, Autonomous Vehicles

I. INTRODUCTION

Traffic signs are vital elements of road infrastructure that communicate regulatory, warning, and informational messages to drivers. With increasing traffic density and the rise of autonomous vehicles, the need for automated and reliable Traffic Sign Recognition systems has become critical. Traditional driver-dependent interpretation of signs is prone to errors due to fatigue, distraction, or poor visibility. TSR systems aim to overcome these limitations by automatically detecting and recognizing signs from visual data captured by onboard sensors.

Early TSR systems were based on handcrafted features such as color thresholding, edge detection, and shape analysis. Although computationally efficient, these methods were highly sensitive to lighting variations, weather conditions, and background clutter. The emergence of deep learning

has revolutionized TSR by enabling end-to-end learning of discriminative features from large datasets, resulting in improved accuracy, adaptability, and robustness.

II. PROBLEM STATEMENT

Despite notable progress, existing TSR systems still face significant challenges in real-world deployment. Variations in illumination, weather conditions, motion blur, occlusion, and sign deterioration adversely affect detection accuracy. Additionally, most datasets are region-specific, limiting model generalization across different countries and traffic regulations. High computational requirements of deep learning models further restrict their deployment on edge and embedded devices.

III. LITERATURE SURVEY

Recent research has explored a wide range of AI-based techniques for TSR. Lightweight transformer architectures such as E-MobileViT focus on reducing model size and inference latency for mobile and embedded platforms. Attention-based CNNs enhance spatial feature localization, improving recognition in visually cluttered environments. Hybrid approaches combining CNNs with traditional classifiers such as Support Vector Machines aim to balance accuracy and computational efficiency.

Other studies integrate TSR with road mapping, GPS tagging, and autonomous driving pipelines, enabling applications beyond driver assistance, such as infrastructure monitoring and smart traffic management. While these approaches demonstrate promising results, limitations related to generalization, robustness, and real-time performance remain prevalent.

IV. EXISTING METHODS

Traditional TSR techniques relied on handcrafted features including Haar Cascades, Histogram of Oriented Gradients (HOG) with SVM classifiers, and color-based segmentation in RGB or HSV color spaces. These methods were computationally lightweight but lacked robustness under real-world conditions.

Modern TSR systems predominantly employ deep learning-based approaches. Convolutional Neural Networks automatically learn hierarchical features, significantly outperforming traditional models. Transformer-based architectures capture global contextual information, while attention mechanisms enable the model to focus on relevant regions of interest. Despite these advances, achieving robustness under diverse environmental conditions and ensuring efficient deployment on low-resource devices remain open challenges.

V. METHODOLOGY

The proposed TSR framework follows a modular pipeline. High-definition cameras continuously capture road scenes, which are then preprocessed using noise reduction, contrast enhancement, and normalization techniques. Region proposal methods identify candidate sign locations, followed by feature extraction using deep neural networks. The extracted features are classified into predefined traffic sign categories, and the recognized signs are communicated to the driver or vehicle control system through visual or auditory alerts.

VI. OBJECTIVES

The objectives of the proposed TSR system include achieving accurate real-time recognition, robustness under varying environmental conditions, efficient deployment on edge devices, support for region-specific signs, and seamless integration with ADAS and autonomous driving modules.

VII. RESEARCH GAP

Analysis of existing literature reveals several research gaps, including dataset bias, limited handling of occluded and degraded signs, sensitivity to extreme lighting conditions, high computational demands, and insufficient real-world testing. Additionally, limited integration with multi-sensor

data and V2X communication restricts system robustness.

VIII. CONCLUSION AND FUTURE SCOPE

AI-based Traffic Sign Recognition systems have become essential components of modern intelligent transportation systems. While deep learning has significantly improved TSR accuracy and adaptability, challenges related to robustness, scalability, and deployment efficiency persist. Future research should focus on multi-sensor fusion, synthetic data generation for rare signs, edge optimization, and integration with smart traffic infrastructure to enable safer and more intelligent road systems.

REFERENCES

- [1] Xiaoyu Guo et al., “E-MobileViT: A Lightweight Model for Traffic Sign Recognition,” 2023.
- [2] Janeba Matej et al., “Traffic Sign Detection, Recognition and Tracking for Road Mapping,” 2022.
- [3] Guoqiang Zhang et al., “Real-Time Traffic Sign Recognition Using Attention-Based CNN,” 2023.
- [4] Snehal Patel et al., “Hybrid Deep Learning Model for Traffic Sign Recognition,” 2021.
- [5] Manju Rani et al., “CNNs for Real-Time Traffic Sign Recognition,” 2022.
- [6] Maxime N. Bol et al., “Efficient Traffic Sign Recognition System for Autonomous Vehicles,” 2020.
- [7] M. R. K. Krishna et al., “End-to-End Deep Learning Framework for Traffic Sign Recognition,” 2022.