

Advancing the Understanding of Human Nutrition: A Synthesis of Traditional Concepts and Contemporary Discoveries

ZEBA¹, RUPANSHI GARG², DR. NISHMA SINGH³

¹*Department of Home Science, Faculty of Arts & Social Sciences, Swami Vivekanand Subharti University, Meerut*

²*(Research Scholar, JRF) Department of Home Science, Faculty of Arts & Social Sciences, Swami Vivekanand Subharti University, Meerut*

³*(Associate Professor) Department of Home Science, Faculty of Arts & Social Sciences, Swami Vivekanand Subharti University, Meerut*

ORCID ID – 0009-0005-3934-3208

ORCID ID – 0000-0002-0378-0765

Abstract- Human nutrition science has evolved dramatically from basic caloric understanding to sophisticated, molecular-level insights into nutrient-gene interactions. This comprehensive review synthesizes foundational nutritional principles with contemporary discoveries in nutrigenomics, the gut microbiome, personalized nutrition, and metabolic health. We examine the transition from population-based dietary recommendations to precision nutrition approaches, highlighting the integration of traditional concepts with modern scientific methodologies. Key areas explored include macronutrient metabolism, micronutrient functions, dietary pattern analysis, and emerging technologies in nutritional assessment. This synthesis reveals that while fundamental nutritional principles remain valid, contemporary research has uncovered unprecedented complexity in nutrient utilization, individual variability, and the multifaceted relationships between diet, health, and disease prevention.

Key words: nutrition sciences, nutrigenomics, gut microbiome, personalized nutrition, dietary patterns, metabolic health.

I. INTRODUCTION

Human nutrition probably is the most basic of all factors that determine health, prevent disease, and assure longevity. From the realization by ancient civilizations that foods were known to possess medicinal properties to present-day molecular nutritional science, our concepts have undergone a radical transformation. The discipline has moved from the discovery of essential nutrients and prevention of deficiency diseases to the elucidation of complex interactions of diet, genes, metabolism, and chronic disease risk.

Traditional nutritional science developed the concepts of essential nutrients, energy balance, and population-based dietary recommendations. These ideas arose from groundbreaking work between the late 19th and early 20th century, whereby vitamins were discovered and specific macronutrient metabolism was described and dietary reference intakes were established. The classic findings of this period developed the relationship between vitamin C and scurvy, thiamine and beriberi, and protein requirements for growth and maintenance.

Contemporary nutrition research has grown markedly beyond these beginnings. Molecular biology, genomics, and systems biology approaches have made it increasingly clear that nutrients serve as more than just fuel and building blocks but also signal molecules regulating gene expression, epigenetic modification, and cellular metabolism. The identification of the gut microbiome as a metabolic organ has shifted fundamentally the paradigm in nutrient processing and utilization. Innovative imaging technologies and metabolomics platforms facilitate real-time nutritional status and metabolic response assessment with unprecedented resolution.

This review aims to synthesize the classical view of nutrition and recent discoveries to examine how classical principles have been refined, expanded, or, in some instances, challenged by modern research. We trace the progress from one-size-fits-all dietary guidelines to personalized nutrition strategies informed by individual genetic profiles, metabolic phenotypes, and microbiome composition.

II. FUNDAMENTALS OF NUTRITIONAL SCIENCE

2.1 Macronutrient Metabolism-Classical Understanding

The classic paradigm of macronutrient metabolism, elucidated in the early to mid-20th century, identified carbohydrates, proteins, and lipids as the major energetic and structural constituents of human nutrition. This paradigm, rooted in calorimetry and metabolic ward studies, defined the energetic equivalents of the three macronutrients and their overall metabolic pathways.

A practical understanding of carbohydrate metabolism was known through glycolysis, the citric acid cycle, and gluconeogenesis. Glucose was established as the brain and central nervous system's principal fuel. Protein, in general, was described mainly based on its amino acid composition. Essential amino acids were determined, and the quality of protein was evaluated by its biological value and protein efficiency ratio. Lipid metabolism was studied mainly for the purposes of fatty acid oxidation toward energy production and the structural functions of phospholipids and cholesterol in cellular membranes.

Energy balance came to be the ambient understanding, with one of its cornerstones being that the balance between energy taken in and energy expended determines whether an individual maintains weight, gains weight, or loses weight. Estimated energy requirements were developed, and calorie counting for weight management became widely applied.

2.2 Micronutrients and Deficiency Diseases

Possibly the single greatest achievement of nutrition science has been the identification of vitamins and minerals as essential micronutrients. Beginning with the work of Casimir Funk, the isolation of vitamins (thiamine, one of the B vitamins) and minerals such as iodine, prevented diseases such as beriberi and goiter. The work of scientists paid off, beginning with Funk, who discovered not just thiamine, but that diseases are caused by nutrient deficiencies. So, the discovery of vitamins and minerals, to cure the symptoms of deficiency diseases was a goal of science, from which other theories followed as we shall see below.

Classical micronutrient research established Recommended Dietary Allowances (RDAs) designed to prevent deficiency diseases in populations. These standards focused primarily on overt deficiency symptoms rather than optimal health or chronic disease prevention. For example, vitamin C recommendations were based on preventing scurvy, rather than potential benefits for immune function or antioxidant protection.

Early in this period, the concept of nutrient bioavailability emerged, encapsulating how the chemical form, food matrix, and presence of enhancers or inhibitors, respectively, could determine absorption and utilization. Examples of these interactions include the differing iron bioavailability from heme and non-heme sources and the enhancement of non-heme iron absorption by vitamin C.

2.3 Development of Dietary Reference Intakes

Dietary Reference Intakes, or DRIs, updated the former RDAs to have a broader approach to setting nutritional guidelines. The DRI system comprises four reference values: Estimated Average Requirement (EAR), RDA, Adequate Intake (AI), and Tolerable Upper Intake Level (UL). This framework addressed that nutritional requirements change with age, sex, and physical condition-namely, pregnancy and lactation-and established the idea of upper limits of intake to prevent toxicity.

Traditional DRIs were established largely in the forms of deficiency studies, balance experiments, and epidemiological observations. These, though groundbreaking at their time, had population averages for reference and could not really account for genetic variability, differences in metabolism, or disease risk profiles.

III. THE CUTTING EDGE OF NUTRITION SCIENCE

3.1 Nutrigenomics and Nutrigenetics

Nutrigenomics and nutrigenetics are paradigm shift in the understanding of the role of nutrition in health and disease. Nutrigenomics studies how dietary components influence gene expression, while nutrigenetics considers the inverse-how genetic variation alters the individual response to nutrients. These disciplines have brought to light that nutrients act as signaling molecules that interact with cellular

sensors to affect the activity of transcription factors, epigenetic marks, and metabolic pathways.

Genetic variations, such as SNPs in genes coding for nutrient metabolism enzymes, transporters, and receptors, sometimes have a profound impact on nutrient requirements and responses of the individual. For instance, MTHFR gene SNPs impact folate metabolism and homocysteine levels and are associated with cardiovascular disease risk and neural tube defect prevention. SNPs in FTO, MC4R, and PPARG likewise influence obesity susceptibility and responses to diets of different macronutrient composition.

Most nutritional influences on gene expression are mediated through epigenetic mechanisms, including DNA methylation and histone modifications, either directly or through noncoding RNAs. Maternal nutrition during pregnancy may provoke epigenetic changes in offspring that persist into adulthood and influence metabolic programming and susceptibility to chronic disease. Nutrients of one-carbon metabolism (folate, vitamin B12, choline, betaine) directly donate methyl groups for DNA methylation, thus providing an explicit mechanistic relationship between diet and epigenetic regulation.

Research has identified a variety of dietary bioactive compounds that modulate gene expression by interacting with nuclear receptors and/or transcription factors. Omega-3 fatty acids activate a group of nuclear receptors called PPARs (peroxisome proliferator-activated receptors), which regulate lipid metabolism and inflammation. Plant polyphenols interact with the transcription factors NF- κ B and Nrf2, among others, to impact oxidative stress responses and inflammatory signaling.

3.2 The Gut Microbiome and Nutritional Metabolism
The recognition of the gut microbiome as a metabolically active organ has profoundly changed nutritional science. The trillions of microbes inhabiting the human gastrointestinal tract contribute enzymes and metabolic capabilities that extend human nutritional capacity, particularly for complex carbohydrate fermentation and synthesis of certain vitamins.

Microbial fermentation of dietary fibre produces SCFA-acetate, propionate and butyrate—which are major energy sources for colonocytes, modulate

systemic metabolism, and influence immune function. Of these, butyrate has emerged as a key signaling molecule regulating gut barrier integrity, decreasing inflammation, and possibly impacting metabolic health via changes in insulin sensitivity and energy expenditure.

The gut microbiome plays a role in nutrient bioavailability through its various activities. Microorganisms synthesize vitamin K2 and some B vitamins, which may therefore influence host nutritional status. Metabolism by the microbiota of polyphenols and other plant compounds generates bioactive metabolites that could exert health benefits different from the parent compounds. On the contrary, dysbiosis or microbial community imbalances have been linked with obesity, type 2 diabetes, inflammatory bowel disease, and metabolic syndrome.

The individual microbiome composition varies substantially with diet, genetics, environmental exposures, and early-life events. This variability explains part of the inter-individual differences in nutrient metabolism and different responses to diets. Some microbial configurations predict a better weight loss response to certain diet interventions, which may indicate that microbiome profiling can inform personalized nutrition recommendations.

The concept has evolved to the notion of prebiotics, which are dietary constituents that selectively stimulate beneficial gut microorganisms. In addition to traditional fiber, recent studies are identifying specific resistant starches, oligosaccharides, and polyphenols that alter microbial composition in potentially useful ways. Probiotics and synbiotics—most variously defined as mixtures of prebiotics and probiotics—represent interventionist methods for changing gut microbiome function, although their efficacy remains variable and context-dependent.

3.3 Precision and Personalized Nutrition
It represents the intersection of nutrigenomics, metabolomics, microbiome science, and digital health technologies to provide personalized dietary recommendations aligned with individual characteristics. This approach recognizes that while population-based dietary guidelines have significant value in public health, they cannot optimize health for everyone because of substantial inter-individual variability in nutrient metabolism and dietary responses.

Large-scale studies have documented remarkable variability in postprandial glucose responses to identical meals among individuals, partially explained by microbiome composition, genetic factors, and lifestyle variables. Similarly, machine learning algorithms that integrate multiple data types, such as genetics, microbiome, continuous glucose monitoring, and physical activity, demonstrate promise in predicting individual glycaemic responses and producing personalized dietary recommendations that improve glycaemic control.

Metabolomics is the comprehensive analysis of small molecule metabolites. It offers dynamic assessment of nutritional status and metabolic phenotypes. In contrast to static genetic information, metabolomic profiles reflect integrated effects of diet, genetics, microbiome activity, and environment. Specific metabolomic signatures have been associated with dietary patterns, cardiometabolic risk, and responses to dietary interventions, offering potential biomarkers for personalized nutrition assessment.

Wearable devices and smartphone apps enable continuous monitoring of dietary intake, physical activity, sleep, and physiological parameters. This will generate large amounts of individual data. If combined with genomic and metabolomic profiles, this will allow real-time nutritional guidance and adaptive intervention strategies. However, there are considerable challenges with respect to data integration, interpretation, clinical validation, and equity of access.

3.4 Chrono nutrition and Metabolic Timing

Chrono nutrition, the study of timing in relation to nutrition, has become one of the most developing aspects when it comes to nutrition optimization. Circadian rhythms influence nutrient metabolism—the time of day alters glucose tolerance, lipid metabolism, and energy expenditure. The data suggest that meal timing, per se, independent of total caloric intake, impacts metabolic outcomes.

Studies have also shown that consuming calories earlier in the day can result in improved glucose regulation and weight management, even when compared to a similar total intake consumed late at night. Time-restricted eating, or the sequestration of food intake to specific windows each day, has also seen metabolic benefit in some studies, possibly due to its alignment with circadian rhythms and extension

of fasting periods that promote metabolic switching between glucose and fatty acid oxidation.

The circadian clock system consists of central pacemakers in the suprachiasmatic nucleus and peripheral oscillators in tissues of the body, ensuring metabolic processes align with light-dark environmental cycles. Nutrients and meal patterns can also entrain peripheral clocks, which may cause them to become decoupled from central control. Disruptions to circadian rhythms, whether through shift work, jet lag, or different eating patterns, have been linked to increased obesity risk and the disorders of metabolic syndrome and cardiovascular disease.

Chrono nutrition principles suggest that it is not simply a matter of what we eat, but when we eat, that influences metabolic health. This temporal dimension adds a layer of complexity to nutritional recommendations but affords new opportunities for the optimization of diet through strategic meal timing in concert with biological rhythms.

IV. INTEGRATION OF DIETARY PATTERNS AND WHOLE FOODS

4.1 From Reductionism to Dietary Patterns

Much traditional nutrition research has utilized reductionist approaches, in which single nutrients were studied in isolation. Modern research increasingly considers dietary patterns—the totality of foods and nutrients eaten—to recognize interactions among nutrients and the impact of food matrices on nutrient availability and activity.

The Mediterranean diet, characterized by high intake of fruits, vegetables, whole grains, legumes, olive oil, and moderate fish consumption, is a well-studied dietary pattern. Prospective cohort studies and randomized controlled trials demonstrate that adherence to the Mediterranean diet is associated with a reduced risk of CVD, type 2 diabetes incidence, and total mortality. These benefits are very likely due to the combined and interactive effects of multiple beneficial components rather than any single nutrient.

The DASH diet, rich in fruits, vegetables, whole grains, lean proteins, and low-fat dairy, but low in sodium, saturated fat, and added sugars, has been proven effective in reduction of blood pressure and

reduction of cardiovascular risk. Plant-based diets, varying between vegan and flexitarian approaches, are highlighted for potential benefits on health and the environment.

Dietary pattern analysis using methods such as principal component analysis, cluster analysis, and dietary indices has found associations between overall diet quality and chronic disease risk that may not be evident when considering only individual nutrients. The holistic concept of a dietary pattern better encompasses real-world eating patterns and captures the small effects of multiple dietary components.

4.2 Bioactive Compounds and Functional Foods

In addition to the basic nutrients, modern science has identified thousands of bioactive substances in foods. These are associated with health effects through a variety of different mechanisms. Polyphenols, which include flavonoids, phenolic acids, and stilbenes, have antioxidant, anti-inflammatory, and metabolic impacts. Carotenoids, such as β -carotene, α -carotene, lycopene, lutein, and zeaxanthin, protect against oxidative damage and may decrease disease risk. Glucosinolates present in Brassica vegetables and many others release metabolites shown to have anticancer properties.

Such studies have led to the development of functional foods: that is, foods that improve health or prevent disease beyond mere nutrition. Examples include fermented foods packed with beneficial microorganisms, such as yogurt and Sauerkraut; fatty fish that provide omega-3 fatty acids; and foods that have been fortified, such as cereals with added vitamins and minerals for which populations have shown deficiencies. Food matrix impacts bioactive compound bioavailability and effect; whole food sources often are more effectual than isolated supplements.

Phytochemicals often act via hormetic effects, whereby low-dose exposures that are potentially toxic at higher doses elicit beneficial responses, complicating simple dose-response assertions. They activate cellular stress response pathways, including but perhaps not limited to the Nrf2-mediated antioxidant response, which may form the basis for reported protective effects against oxidative damage and chronic disease.

V. NUTRITION IN DISEASE PREVENTION AND MANAGEMENT

5.1 cardiovascular disease

The relation of diet to cardiovascular disease has progressed from the diet-heart hypothesis emphasizing mainly saturated fat and cholesterol to one that is more expansive, including dietary patterns, inflammation, oxidative stress, and metabolic health. While the reduction of intake of saturated fat is still warranted, the quality of replacement nutrient-unsaturated fats, refined carbohydrates, or whole grains-matters greatly in determining cardiovascular outcomes.

Omega-3 marine fatty acids have shown cardiovascular benefits due to several mechanisms, including the reduction of triglycerides, anti-inflammatory action, and possibly antiarrhythmic effects. Fiber intake, especially from whole grains and legumes, relates to lower cardiovascular risk by its effects on cholesterol levels, blood pressure, glucose regulation, and possibly via the gut microbiome.

While individual sodium sensitivity may vary, sodium restriction has remained one of the cornerstones of hypertension management and prevention of cardiovascular diseases. Potassium intake from fruits and vegetables is definitely protective for blood pressure regulation, suggesting the overall dietary patterns rather than a single nutrient restriction.

5.2 Metabolic Syndrome and Type 2 Diabetes

Nutritional approaches play a central role in the prevention and management of metabolic syndrome and type 2 diabetes. In addition to calorie restriction for weight reduction, specific dietary patterns and macronutrient compositions have effects on insulin sensitivity, glucose homeostasis, and metabolic risk factors.

Both low-carbohydrate and Mediterranean-style diets have been shown to be effective in clinical trials for glycemic control and the reversal of metabolic syndrome. The optimal macronutrient distribution likely varies among individuals based on genetic factors, insulin sensitivity, and metabolic phenotype, supporting personalized nutrition approaches.

The majority of the benefit of dietary fiber, and particularly the soluble fiber and resistant starch, seems to be related to its effects on glucose absorption, gut hormone secretion, and possibly the gut microbiome, which in sum improve glycemic control. Certain foods, including legumes, nuts, and whole grains, tend to show favorable associations with risk in prospective studies.

5.3 Cancer Prevention

Dietary factors influence cancer risk through various pathways, such as oxidative injury, inflammation, hormone metabolism, and epigenetic changes. No single dietary factor has been shown to either prevent or cause cancer, but rather overall dietary patterns shape the risk for different types of cancers.

That high intake of fruits, vegetables, and whole grains is associated with a low risk of cancer probably reflects the effects of fiber, vitamins, minerals, and phytochemicals. In contrast, consuming processed meat has been classified as carcinogenic, and the consumption of red meat as probably carcinogenic, based on mechanistic and epidemiological evidence.

Obesity is a major risk factor in cancer; excess body fat increases the risk of several types of cancers due to mechanisms encompassing insulin resistance, inflammation, and changes in hormone levels. Therefore, dietary and lifestyle interventions for weight management contribute to the prevention of cancer.

VI. CHALLENGES AND FUTURE DIRECTIONS

6.1 Methodological Considerations

Nutritional studies intrinsically possess methodological problems, which make interpretation and application of findings difficult. Dietary assessment tends to be highly dependent on subjective reporting of intake, which is unfortunately often accompanied by recall bias, social desirability bias, and measurement error. Although biomarkers allow for objective measurement of specific nutrients, there is not always a validated biomarker for every dietary component.

There are practical and ethical constraints to randomized controlled trials in nutrition. Dietary interventions over a long period of time are burdensome to implement and maintain, and adherence can be a big issue. Long-term trials with

whole foods or dietary patterns cannot be blinded due to the nature of the intervention. Observational studies can give long-term outcomes but cannot confirm causality due to potential confounding.

With diet, there are thousands of compounds ingested in an almost infinite array of combinations, which makes it next to impossible to single out the effect(s) of a single component of that diet. Nutrient interactions and food matrix effects, as well as compensation behaviors where other dietary components are changed when one is manipulated further confound an already complicated interpretation.

6.2 Translation to Public Health Practice

Despite the emergence of personalized nutrition, population-based dietary guidelines continue to play an invaluable role in public health practice. Complicated scientific evidence is thus translated into guidance that walks a thin line between scientific precision and practical applicability. Guidelines must consider diverse populations, cultural food practices, economic constraints, and food availability.

Nutritional health disparities reflect the complex interplay between socioeconomic circumstances, food access, education, and systemic inequities. Therefore, the needed approaches to address such disparities go beyond individual dietary recommendations to encompass food policy and community-level interventions, thus making effective demands on the social determinants of health.

Nutrition information and misinformation abound in media outlets, which often confuse consumers. Efforts at science communication need to convey nuanced evidence while countering oversimplified and misleading claims. Health-care providers need training in nutrition to offer evidence-based guidance.

6.3 Emerging Trends & Future Research

Artificial intelligence and machine learning applications in nutrition hold promise in the analysis of complex datasets, prediction of individual dietary responses, and generation of personalized recommendations, but this will require technical validity, algorithmic transparency, and consideration of potential biases in training data.

Multi-omics integration-genomics, transcriptomics, proteomics, metabolomics, and microbiomics—may enable comprehensive assessment of individual nutritional status and metabolic phenotypes. To realize this potential, there is a need for standardized methodologies, improved data integration approaches, and large-scale validation studies.

Novel assessment technologies, continuous glucose monitors, digital biomarkers, and advanced imaging allow for real-time monitoring and feedback. Integration of such tools into nutritional research and practice might advance knowledge regarding dynamic metabolic responses and enable adaptive dietary interventions.

Research priorities include the following: explaining the mechanisms underlying the individual variability in responses to diet; validation of biomarkers at an individual level as predictors of personalized nutrition; investigation of long-term effects of emerging dietary patterns; and developing effective strategies for behavior change and dietary adherence.

VII. CONCLUSION

The science of human nutrition stands at a remarkable juncture, where foundational principles established over the past century converge with contemporary discoveries revealing unprecedented molecular complexity. Traditional concepts, such as essential nutrients, energy balance, and the prevention of deficiency, remain valid foundations, but modern research has revealed that the influence of nutrition on health extends far beyond these basic functions. The integration of nutritional genomics, microbiome science, metabolomics, and digital health technologies will move nutrition from population-based recommendations to precision approaches. It considers the individual genetic profile, the metabolic phenotype, and the microbiome composition. This evolution does not invalidate traditional dietary guidance but rather enriches it by offering a deeper mechanistic understanding along with possibilities for individualization. Several key themes emerge from this synthesis.

First, nutrients function as signaling molecules that influence gene expression, epigenetic modifications, and metabolic pathways, not merely as fuel and building blocks. Second, the gut microbiome represents a critical mediator of nutritional effects,

contributing metabolic capacity and producing bioactive metabolites that influence host physiology. Third, substantial inter-individual variability exists in nutrient metabolism and dietary responses, suggesting that personalized approaches may optimize outcomes for many individuals. Fourth, dietary patterns—or overall combinations of foods—tend to be better predictors of disease risk than individual nutrients considered in isolation. Such a finding supports whole-food, pattern-based approaches and argues against an excessive emphasis on single nutrients. Fifth, the timing of nutrient intake relative to the circadian rhythm may affect metabolic consequences, introducing time as a parameter in nutritional optimization. Despite this remarkable progress, much work remains. Various methodological limitations to nutritional research, challenges in translating complex evidence into workable guidance, persistent health disparities, and the proliferation of nutrition misinformation all require attention.

Understanding mechanisms of variability among individuals, validation of approaches to personalized nutrition, investigation of long-term health outcomes of emerging dietary patterns, and development of effective strategies for implementation should be high priorities in future research. Accordingly, the ultimate goal of enhancing nutritional knowledge is to improve the health of humans throughout the course of life and to prevent chronic diseases that are costly both for individuals and societies. This can only be realized by continuous integration between traditional wisdom and contemporary science, by rigid research methodology, translation into practice, and paying attention to equity in access to nutritious foods and evidence-based guidance. Nutritional science, in a constant state of evolution, has the dual challenge of maintaining scientific rigor while communicating effectively to diverse audiences. Synthesizing classic concepts with contemporary discoveries, the discipline is poised to make unparalleled contributions to human health—but only if new knowledge is applied in thoughtful, ethical, and equitable ways.

REFERENCES

[1] Blaut M. Gut microbiota and energy balance: role in obesity. *Proc Nutr Soc.* 2015;74(3):227-234.

- [2] Bouchard C. Gene-environment interactions in the etiology of obesity: defining the fundamentals. *Obesity*. 2008;16(Suppl 3):S5-S10.
- [3] Calder PC, Ahluwalia N, Brouns F, et al. Dietary factors and low-grade inflammation in relation to overweight and obesity. *Br J Nutr*. 2011;106(Suppl 3):S5-S78.
- [4] Cani PD, Delzenne NM. The role of the gut microbiota in energy metabolism and metabolic disease. *Curr Pharm Des*. 2009;15(13):1546-1558.
- [5] Corella D, Ordovas JM. Nutrigenomics in cardiovascular medicine. *Circ Cardiovasc Genet*. 2009;2(6):637-651.
- [6] Estruch R, Ros E, Salas-Salvadó J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. *N Engl J Med*. 2018;378(25):e34.
- [7] Ferguson LR, De Caterina R, Görman U, et al. Guide and position of the International Society of Nutrigenetics/Nutrigenomics on personalised nutrition: Part 1 - Fields of precision nutrition. *J Nutrigenet Nutrigenomics*. 2016;9(1):12-27.
- [8] Gibney MJ, Walsh MC. The future direction of personalised nutrition: my diet, my phenotype, my genes. *Proc Nutr Soc*. 2013;72(2):219-225.
- [9] Hu FB. Dietary pattern analysis: a new direction in nutritional epidemiology. *Curr Opin Lipidol*. 2002;13(1):3-9.
- [10] Jacobs DR Jr, Tapsell LC. Food, not nutrients, is the fundamental unit in nutrition. *Nutr Rev*. 2007;65(10):439-450.
- [11] Kaput J, Rodriguez RL. Nutritional genomics: the next frontier in the postgenomic era. *Physiol Genomics*. 2004;16(2):166-177.
- [12] Kolodziejczyk AA, Zheng D, Elinav E. Diet-microbiota interactions and personalized nutrition. *Nat Rev Microbiol*. 2019;17(12):742-753.
- [13] Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. *Cell*. 2006;124(4):837-848.
- [14] Ordovas JM, Ferguson LR, Tai ES, Mathers JC. Personalised nutrition and health. *BMJ*. 2018;361: bmj. k2173.
- [15] Pan A, Sun Q, Bernstein AM, et al. red meat consumption and mortality: results from 2 prospective cohort studies. *Arch Intern Med*. 2012;172(7):555-563.
- [16] Rampelli S, Candela M, Turroni S, et al. Functional metagenomic profiling of intestinal microbiome in extreme ageing. *Aging*. 2013;5(12):902-912.
- [17] Rietman A, Schwarz J, Tomé D, Kok FJ, Mensink M. High dietary protein intake, reducing or eliciting insulin resistance? *Eur J Clin Nutr*. 2014;68(9):973-979.
- [18] Rimm EB, Appel LJ, Chiave SE, et al. Seafood long-chain n-3 polyunsaturated fatty acids and cardiovascular disease: a science advisory from the American Heart Association. *Circulation*. 2018;138(1): e35-e47.
- [19] Schulze MB, Martínez-González MA, Fung TT, Lichtenstein AH, Forouhi NG. Food based dietary patterns and chronic disease prevention. *BMJ*. 2018;361: k2396.
- [20] Simopoulos AP. Nutrigenetics/nutrigenomics. *Annu Rev Public Health*. 2010; 31:53-68.
- [21] Sonnenburg ED, Sonnenburg JL. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. *Cell Metab*. 2014;20(5):779-786.
- [22] Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. *Nature*. 2012;489(7415):242-249.
- [23] Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. *Nature*. 2006;444(7122):1027-1031.
- [24] van Ommen B, van der Greef J, Ordovas JM, Daniel H. Phenotypic flexibility as key factor in the human nutrition and health relationship. *Genes Nutr*. 2014;9(5):423.
- [25] Willett W, Rockström J, Loken B, et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. *Lancet*. 2019;393(10170):447-492.
- [26] Zeevi D, Korem T, Zmora N, et al. Personalized nutrition by prediction of glycemic responses. *Cell*. 2015;163(5):1079-1094.
- [27] Zhang C, Zhang M, Wang S, et al. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. *ISME J*. 2010;4(2):232-241.
- [28] Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. *Nat Rev Gastroenterol Hepatol*. 2019;16(1):35-56.