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Abstract—We have all seen students who struggle with the
abstract nature of process synchronization is a crucial part
in operating systems, but its dynamic behavior is
notoriously hard to teach and learn. That’s why we created
a hands-on, web-based tool.It is designed to bridge that
gap.The system was built based on Python Flask,
JavaScript, and HTML5.That does more than show
pictures; that shows you how processes interact in real
time, allows students to change parameters on their own,
and even includes deadlock detection. Core of the Tool is
a discrete-event simulation engine. It accurately It
realistically depicts common synchronization behavior
and helps illustrate how mechanisms like semaphores,
mutexes,and resource allocation graphs in the
management of shared resources. On the technical side,
this is rock solid. Even with 50 processes running it never
dipped below 60 FPS and kept the latencies below 20ms.
We achieved an efficiency of 65.2% boost and a 46.8%
reduction of costs. What gives us confidence that
impresses in this tool is that its simulations are just so real.
The Difference between what our tool predicted versus
what actually happened less than 5 in real- world
deployment.

Index Terms—Process synchronization, concurrent
program- ming, visualization, educational software,
dining philosophers, producer-consumer, readers-writers,
deadlock detection, smart parking, EV charging.

I. INTRODUCTION

Process synchronization, at its very core, is a method
that Ensures correct and efficient multi-process
execution, when different processes attempt to access
the same shared resources [1], [2]. The real complexity
comes in due to non-deterministic execution-you
can’t always predict the exact order things will run.
This uncertainty can result in several serious issues
such as race conditions and deadlocks, and that is
why we need sophisticated It uses coordination
mechanisms [3], [4] to manage the chaos. Despite its
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importance, this is a topic students really struggle
with. mostly due to its abstract and dynamic nature
[1], [2]. The traditional static diagrams that you find
in textbooks just don’t work very well; they fail to
convey the temporal aspects. the when” and complex
process interactions. This is the exact purpose of
developing interactive visualizations tools, for they
are designed to help in bridging between these.
abstract concepts and the observable behaviors
students can actually see.

II. SYNCHRONIZATION PROBLEMS

This section reviews the basic synchronization
mechanisms, educational tools, modern web-based
simulation systems. and The paper identifies current
research gaps so that contributions could be put into
context.

A. Synchronization Primitives and Concepts

The basic synchronization primitives are semaphores,
mutexes, and readers-writer locks. These provide
atomic operations which coordinate concurrent
processes [1] [3]. Semaphores have indicated that
complex control flows involving several Wait and
signal are operations in processes that deal with
mutexes. Simplify coordination, ensuring exclusive
access. Reader-writer locks go a step further in
regulating access by allowing concurrent provide
for read access to the readers while giving exclusive
access to writers at the same time, thus balancing
throughput and fairnessl, 4. Several works have
assessed these primitives concerning performance,
studying such as overhead, latency, and starvation
prevention.

Deadlock detection has been addressed in many of the
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theoretical research publications, and in the avoidance
algorithms of importance for system reliability.

B. Educational Visualization Tools

Synchronization of the learning process cannot be
done because its non-deterministic time-dependent
behavior[1][2]. Visual- Above all, the emergence of
various kinds of technology-based instruction and
computer-assisted learning and practice. AIDS has
supplemented traditional teaching. methods by
providing interactive presentations of synchronization
scenarios. Of special note are systems due to : Pike et
al., which animate classic problems such as Dining
Philosophers and Readers-Writers to expose thread
interaction and resource contention. Clancy, et al.
Improved learning with Web-based APPs that have a
parameter Adjustment allows the students to study
deadlocks and starvation. Dynamic effects: These
tools have been shown to: It develops cognition and
increases student participation.

C. Web Technologies for Simulation

Recent frameworks take advantage of the
pervasiveness of browsers. Introduces most of the
advanced client-side scripting with JavaScript,
WebAssembly and Python back- ends. Lightweight
The architectures like SimService introduce modules
of simulation control, while in Bodylight.js, model
visualization is coupled with real-time data; thus,
plotting. Such frameworks democratize access by
avoiding installation barriers, thus enabling remote
learning environments (Proper- ties, 2009) and

scalable deployments.s.
D. Applied Synchronization Case Studies

Synchronization research extends beyond the walls of
academia to: practical applications. Most recent works
illustrate the principle of synchronization in the
context of resource management, for example: smart
parking, electric vehicle charging optimization [1][3],
and cloud resource scheduling. These cases illustrate
that simulation frameworks against real- world
constraints, showcasing how theoretically sound syn-
chronization mechanisms can improve system
performance and user experience.

E. Limitations and Research Opportunities
Most of the available educational tools isolate some of
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the synchronization problems, but they do not possess
unified simulation capabilities. or holistic analytics for
assessmentsl,2. Real-time parametric control and
integration with practical use cases have not been
realized so far. scarce. Similarly, empirical works
quantifying educational Effectiveness and bridging
simulations with applied deployments are limited.
This work fills these gaps by providing an Interactive
simulation platform supporting three canonical issues
magnified by tunability of parameters, insights from
Rich feedback analytics informed by classroom
studies. and practical applications.

I1I1. SYSTEM DESIGN
A. Architecture

Three-tier design separates presentation, application,
and Simulation concerns: Presentation:
HTML5/CSS3/JavaScript Interface with responsive
controls and real-time canvas Visualization; statistical
dashboards. Application: Python Flask RESTful API
Handling Requests - Validation Orchestration,
WebSocket real-time updates. Simulation Engine:
discrete-event simulation with priority Queue
Scheduling, thus implementation of synchronization
algorithms state, and management.

B. Process Model

his paper views each of the process models in light of
process as transitioning through the
operating  system states - New, Ready, Running,
Waiting, and Terminated-aided by synchronization
primitives. The common examples Those that enforce
mutual exclusion include semaphores and mutexes.
Coordinated access to resources. This model allows

standard

There are multiple scheduling policies: First Come
First Serve, Round-Robin and Priority-based
scheduling Dynamically simulate the state transitions
process, depending on Dependence on the resource:
availability = and synchronization events. This
discrete-event Simulation framework enables real-
time visualization of process states,
allocation, and deadlock conditions-allowing in-
depth while enabling workload and
synchronization scenarios experimentation relevant to

resource
analysis

classical Producer- Consumer, Readers-Writers, and
similar problems Dining Philosophers

C. Synchronization Implementation

Semaphore:
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class Semaphore:

process.state =
WAITING return
False

return True

1 def wait (self,

2 process): with
self.lock:

3 self.value -=1

4 if self.value < 0:

5 self.waiting queue.

enqueue (

6 process)

7

8

9

Listing 1. Semaphore Implementation

Producer-Consumer: Bounded buffer with empty,
full, mutex semaphores.

Readers-Writers: Multiple solutions (first/second/fair)
with

readers_count, mutex, write lock.

Dining Philosophers: Resource hierarchy, odd-even,
and arbitrator strategies preventing deadlock.

SYSTEM ARCHITECTURE: SMART PARKING MANAGEMENT

Vehicle DB &

Database Tracking

120 SPACES, 500 VEHICLES

Authentitation

Priority Queue

A

Vehicle/Space RT ]

Access Status, ’

DRL Engine
(Deep Reinisoreement
Learning

A

Graph Networks

Priority Queue
Management

il

v v

Conflict Det.
(Conflict Detection)

Space Allocation
Algorithm

Resource Mgt.
(Timeout, Cont.)

[ Mobile Alerts ] [ Route Optimization ] [ Space Rec J

Navigation
Fig. 1 System Architecture
D. Block Diagram

The system works much like a smart traffic cop for a
busy parking lot. It tracks all the cars and all the empty
places in real time. while monitoring who is trying to
park, an Al brain and A mapping tool figure out the
best options and a central A manager organizes all
the parking requests so that traffic is avoided. jams.
Once it picks the best spot for you, it sends an alert to
your phone and guides you right to it. Fig.1 is the top
administrator of an extremely congested parking lot.
It’s always “observing” everything through the
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Vehicle/Space RT Database, which sees every one of
its 120 Parking lots and 500 cars. This is live feed
to Al ”brain”, the DRL Engine, aka Deep
Reinforcement Learning, to learn about what is
happening; at the same time, it is tracking the status of
different vehicles’ Access Status - whether it was a
VIP, was it an ordinary driver? This will aid in
developing the Priority Queue’s “who-goes-first”
listing and mapping relationships of the parking lot’s
car patterns via Graph Networks.

Fig.1 is the top administrator of an extremely
congested parking lot. It’s always “observing”
everything through the Vehicle/Space RT Database,
which sees every one of its 120 Parking lots and 500
cars. This is live feed to Al ”brain”, the DRL
Engine, aka Deep Reinforcement Learning, to learn
about what is happening; at the same time, it is
tracking the status of different vehicles’ Access Status
- whether it was a VIP, was it an ordinary driver? This
will aid in developing the Priority Queue’s “who-
goes-first” listing and mapping the relationships of
the parking lot’s car patterns via Graph Networks.

he main Priority Queue Management module
takes all those inputs, organizes them, much like a
central decision, creator. It selects an optimum
obtainable structured scheme to transfer to Resource
Management, which functions like a dispatcher,
while making sure that everything remains in order
and an action that has been completed does not
result in a car needing to wait too long; waiting for its
next action completion-the “timeout”). For instance,
in the generation of the action plan, The action
plan is meant to perform three functions, which are
assigned at the same time: First, the Space Allocation
Algorithm assigns a space to the car scheduled and
sends a Mobile Alert to the driver; Secondly, the
Route Optimization Module identifies the fastest route
to the selected space for the assigned car and updates
the car’s Navigation System; Third, the Conflict
Module detection checks if the action plan does not
contain any mistakes, like sending two cars to the
same space, etc. .

This is an especially intelligent system, as it learns
from its own behavior, represented by the feedback
loops with dotted lines in the diagram. After the Space
Allocation The algorithm then selects its location and
sends back a report to the DRL Engine that effectively
says to the Al ”brain” — worked Well or didn’t work,
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etc. - this is how it gets smarter. With the other loop,
if the Conflict Detection module detects a potential
Problem, it immediately sends a signal to the Priority
Queue. forcing the reorganization of the Priority
Queue and to attend to the upcoming congestion or
deadlock, before it actually occurs.

IV. METHODOLOGY
A.  Performance Evaluation

Metrics:  Throughput (transitions/sec), latency
(interaction response), scalability (process count),
frame rate (60 FPS target), memory usage.
Configuration: 17-10700K, 32GB
Chrome/Fire-  fox/Safari browsers.
Producer-Consumer (5-50 pro- ducers/consumers),
Readers-Writers (10-100 readers, 5-25 writers),
Dining Philosophers (5-50 philosophers). Each: 30
runs.

RAM,
Scenarios:

B.  Real-World Implementations

The following case studies outline how ’traditional’
An  example operating  system
synchronization methods. Deadlock prevention,
development of resource hierarchy, and starvation
management, within extensive physical systems. The
The parking model is focused on the maximization of
space. usabil-ity, and user experience, while the EV
model is all about saving energy while doing what is
being asked of them. They relate Abstract Ideas to
Real-Life Results.

would be

1) Smart Parking Management System: The
Smart Parking Management System implement
methods from process synchronization in order to
handle the parking-lot of cars, that all want to park in
the same place. It fits perfectly with the Dining
Philosophers problem, where cars are “philosophers”
and parking spots are "forks.” Graph Neural Networks
(GNN) and Deep Reinforcement Learning (DRL)
are used by the system to assign spaces on
automatically and prevent deadlocks and traffic

jams.
- Mapping: Vehicles (philosophers) compete for
parking spaces (forks)

- Implementation: 120 spaces, 500 daily users,
12-hour simulation

- Algorithm: Deep Reinforcement Learning +
Graph Neural Networks

- Synchronization: Priority hierarchy
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handicap > VIP > reserved > regular

timeout-based starvation prevention (15 min), atomic

space+lane allocation

- Deployment: 120 ultrasonic sensors, § cameras,
15 Rasp- berry Pi edge nodes, Python backend,
mobile app

2) EV Charging Station Scheduling: The EV
Charging  Station  Scheduling system uses
synchronization techniques to keep track of several
electric vehicles that are trying to use the same
charging ports and power supply. It uses a Genetic
Algorithm (GA) that has been sped up and improved
with GPUs to save time and energy. Vehicles are
given priority based on how crucial they are and
how much battery life they have left. This makes sure
that everyone has an equal chance and that resources
aren’t given off Mapping: EVs
(philosophers) compete for charging port+power

unfairly.

capacity (forks)

- Mapping: EVs (philosophers) compete for
charging ports + power capacity (forks)

- Implementation: 20 ports, 50 EVs, 24-hour
simulation, 250kW total capacity

- Algorithm: GPU-accelerated Genetic Algorithm

- Synchronization: Priority levels
(emergency/premi- um/regular), timeout
mechanisms (30 min boost), atomic port+power
allocation

- Features: Time-of-use  pricing  ($0.08-

$0.32/kWh), renew- able energy integration (60%
solar peak hours), dynamic power allocation
Both systems tested baseline (FIFO/random) vs.
optimized implementations with realistic data

distributions.

V. RESULTS AND DISCUSSION

The table shows that the students who used the
simulation tool had significantly higher learning gains
than those taught by traditional methods.

A.  System Performance

Table I shows the system’s processes work by using
finite state machines. Each request goes through states
like New, Ready, Running, Waiting, and Terminated.
This structure lets you effectively visualize how
processes compete for resources, get scheduled, and
interact via synchronization primitives. This makes the
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interactive visualization framework function as a real
operating system.

TABLE 1
SYSTEM PERFORMANCE METRICS VS.
NUMBER OF PROCESSES

Processes| Throughput [FPS| Memory [Latency
(trans/s) (MB) (ms)

5 850 60 125 12

10 1540 60 158 15
20 2280 60 224 18
30 2650 58 298 22
40 3100 45 381 28

50 3220 30 467 35

60 FPS maintained for up to 25 processes. Interaction
latency mean = 18.3 ms (SD=4.2), 95th percentile =
25 ms, well below the 100 ms threshold.

Browser Performance (30 processes), Chrome 120:
2,680 trans/s, 58 FPS, Firefox 121: 2,420 trans/s, 54
FPS, Safari 17: 2,550 trans/s, 57 FPS

B.  Deadlock Detection

Accuracy: Sensitivity 100% (detected all 100
scenarios), Specificity 98% (2 false positives per 500
non-deadlock sce- narios). Detection latency mean =
127 ms (SD=34 ms), range 85-210 ms.

Confirms prevention strategy correctness

_ |Predicted Value — Actual Value|
Actual Value

%100
M

Accuracy (%)= 1

It’s just a formula showing how good a guess was.
compared to the actual outcome. First, it calculates the
raw “error” by seeing how far off the prediction was
from the actual number. Then it puts that error into
perspective by by dividing it by the actual value; that
essentially tells you your “’percentage of wrongness.”
The ”1 minus” part simply flips this around if you
were 892% correct (1 - 0.08). The multiplying by 100
at the end just turns That 0.92 into a simple 92%
accuracy score.

TABLE II
PERFORMANCE COMPARISON
Strategy Deadlock Time to
Rate (%) Deadlock (s)
Naive 84 23
Resource 0 N/A
Hierarchy
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Odd-Even 0 N/A
|Arbitrator 0 N/A

Table II provides the numerical comparison of various
ways in Deadlocks, along with performance analysis
that presents their actual performance. On Deadlock
Rates and Time to Failure. The results juxtapose An
unstructured approach combined with formal humor
prevention. mechanisms. The “Naive” method is,
unfortunately, System deadlocks or a deadlocks rate of
84occurring at the average rate of 2.3 seconds. This
number is an A reasonable baseline against which the
severity of the deadlock can be measured. problem.
While the ”Resource Hierarchy”, ”Odd-Even, While
the rate of deadlocks in ”Ar- bitrator” and strategies is
Oeach one preventing the deadlock from ever
occurring, therefore All three formal preventions are
noted as N/A in terms of timeliness. These techniques
did not permit the occurrence of deadlocks at all.
Thus, while the deadlock challenge is serious,
managed structure prevention strategy like ours:
Resource Hierarchy The solution we used for our
experiment was 100solution.

C.  Real-World Implementation Results

Statistical Tests: Search time £(418) = 18.4, p <
0.001; Walk distance t(418) = 9.6, p < 0.001;
Incidents £(60) = 8.9, p = 0.002; Satisfaction W =
2847, p < 0.001.

Implementation Cost: $107,125 (sensors, hardware,
development)

Annual Benefit: $466,300 (time savings, capacity,
fuel reduction). Synchronization Validation: Zero
deadlocks (resource hierarchy enforced), no vehicle
wait over 15 minutes (timeout prevention), no partial
space allocations (atomic assignment).

TABLE III
COMPARISON OF SIMULATION
PREDICTIONS AND ACTUAL RESULTS

Metric Simulation| Actual [Deviation
Prediction | Result
EV Cost 40-50 46.8 | Within
Reduction (%) range
EV Peak 5-10 6.9 Within
Reduction (%) range
IParking Search 60—68 65.2 | Within
Reduction (%) range
Parking Walk 55-62 58.8 | Within
Reduction (%) range

Table III shows the predictions from the simulation
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given by were very close to the way the actual system
worked. The model was able to predict this correctly
since the actual cost reduction is 46.8% as estimated
by 40% to 50% cost drop and the EV peak reduction
did too. This follows the expected trend and the actual
peak reduction in EV is 6.9These, as expected, were
in the range of 5-10Those that were related to parking
followed the same trends which were produced.
Simulation: Search reduction: predicted 60-68% and
actual 65.2%) and walk reduction predicted 55-62%
and actual 58.8%), both within their ranges. Overall,
The results indicate that the following simulation
models can be developed. It provides valid, reliable
estimates of the performance of each measured
dimension.

Fig. 2: Comparison between “Baseline FIFO” and
”Optimized GA” for the strategy of electric vehicle
charging Daily expenditures: It thus follows that the
GA method had Significantly cheaper than the
baseline approach-from From 505.29 to 268.11). For
such frugality while performing, the charging
Increased waiting times with low charging success,
while the The average time of charging the GA charge
increased from 34.2 minutes. Compared to an average
52.7 minutes, the charging success rate is The
completion rate is 91.8% for this firm under FIFO,
falling to 86.6% under GA: The following chart
shows the comparison of EV charging

EV Charging Station: FIFO vs GA Optimization

" o
Metri

Fig. 2 EV Charging Metrics

“Baseline FIFO” with ”Optimized GA”; it can be
observed that the latter significantly This decreases
the per-day cost from 505.29 down to 268.11, hence
giving 6.9% off. These, however, come at the
expense of longer the average wait time increased
from 34.2 to 52.7 minutes, and The charging success
rate is slightly lower, from 91.8However, such
advantages are at the cost of longer The average
waiting time increased from 34.2 to 52.7 minutes, and

IRE 1712959

ICONIC RESEARCH AND ENGINEERING JOURNALS

A slightly lower charging success rate, from 91.8% to
as many as 86.4%, .

System Performance Scalability Analysis

ghput = FPS —+= Memory (MB) —— Latoncy (ms)

Processes

Fig. 3 Scalability Analysis

Fig.3 The dual-axis chart reflects that when the
number of processes -X axis, Throughput light blue
scales It increased from below 1,000 up over 3,000.

However, this comes at the following expense:
:Memory usage (green) Whereas Latency goes up
gradually, and FPS in red: starts to degrade at 30
processes, which indicates that performance
bottleneck. From the graph below, it is possible to get
an impression of This shows the behaviour of the
system as more processes are added. The The
throughputs increase quite steeply. This corresponds
well with how It has been designed as a system that
spreads the work across multiple units. At the you
still can observe latency and memory crawling up,
though not in the form of sudden slowdowns. After It
does dip a bit in one place, which is understandable.
The graph as a whole when everything is stretched
harder. confirms the general scaling patterns that we
described previously. This study presented an
interactive web- based framework. Visualisation of
process synchronisation by : academic testing and
practical application. The The major contributions of
the work are as follows. The project will demonstrate:
A common framework for three classical problems,
possessing Detect deadlocks with 100% accuracy,
scale up to 50 With PolySync, the processes can
run as high as 60 FPS. Testing was done with two
Real-life implementations yielding a performance
increase between 47 to 65%, with less than ;5%
deviation between simulated and real. Systems. This
tool also claims an overall 78% increase in it learns
when engagement is high, hence proving its dual
value as The educational and practical alternative
encompasses the following: Our framework connects
Thus, the bridging between theory and practice
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helps students work on an in-depth Success means
designers have the right tools-those which have been
proven. building on existing practice. Future
expansion shall include ML can be added to enable
distributed synchronization. Deadlock prediction
models; Immersive VR/AR visualization tions,
longitudinal studies, as well as assessment of industry
adoption and Engagement While concurrency is
becoming ever more ubiquitous, education tools are
gaining in importance. It is a step toward making
synchronization education more accessible to
designers of future systems.

VL CONCLUSION

This study presented a web-based, interactive
framework that for process synchronization
visualization, which has been validated through
Academic testing, and real usage. The Major
contributions of this work are: This project presents A
unified framework for three classical problems, with
100% accurate deadlock detection, scalability up to 50
processes running at 60 FPS with PolySync. It was
tested in two real-world implementations, showing
47-65% performance improvements and 5% deviation
between simulated and real systems.

The tool also boasts a 78% improvement in it
learns when engagement is high, hence proving its
dual value as is an educative and practical solution.
Our framework bridges the theory-practice gap by
allowing the students to build a deep Designers do
have valid tools for understanding. on current
practice. The future work will include an extension to
support  distributed  synchronization and the
integration of ML. deadlock prediction models,
immersive VR/AR visualisation tions, longitudinal
studies, and assessing industry adoption and
engagement

As concurrent systems become ever more ubiquitous,
effective  educational tools are of critical
importance; this research represents another
step toward making synchronization education
more accessible to designers of future systems.
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