© DEC 2025 | IRE Journals | Volume 9 Issue 6 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV916-1712995

A Survey on Hybrid SQL Injection Detection: Feature-
Selection, Classical Machine Learning, and Deep
Learning Approaches to Obfuscated, Blind, and Time-
Based SQL1

PUSHKAR Y JANE!, ROSHANI K MUKADAM?
! Department of Computer Science & Information Technology, Chhatrapati Shivaji Maharaj University,
Panvel, Navi Mumbai
? Department of Computer Science & Information Technology, Chhatrapati Shivaji Maharaj University,
Panvel, Navi Mumbai

Abstract- SQL Injection (SQLi) remains one of the most
persistent and damaging classes of web application
vulnerabilities. As attackers adopt more sophisticated
techniques — obfuscation, blind channels, and time-
based inference — traditional detection techniques
(rule/signature based and shallow ML) show limited
robustness. Recently, hybrid approaches that combine
feature selection, classical machine learning (ML) for fast
filtering, and deep learning (DL) for semantic verification
have gained traction. This survey thoroughly analyzes
contemporary SQL Injection (SQLi) detection methods,
specifically focusing on hybrid architectures capable of
identifying obfuscated, blind, and time-based variants.
This section details the SQLi attack taxonomy and
corresponding defensive mechanisms. It further explores
the application of advanced feature engineering
techniques, such as Chi-Square ranking, to enhance
detection. The analysis concludes with a performance
evaluation (benchmarking) of both Machine Learning
(ML) and Deep Learning (DL) models employed in this
security domain.

L INTRODUCTION

SQL Injection (SQL1) constitutes a persistent, high-severity
threat to web application confidentiality and integrity. The
attack exploits input sanitization failures, enabling the
injection of adversarial SQL fragments to illegally modify
or bypass legitimate database operations. Current attacker
methodologies necessitate detection systems capable of
mitigating advanced evasion techniques, notably payload
obfuscation, blind SQLi, and time-based data retrieval
strategies. These variants are challenging because they
often leave little or no overt evidence in typical logs, and
they are engineered to bypass common filters.
Detection techniques vary from Static Application Security
Testing (SAST) and rule-based WAFs to data-centric
ML/DL classifiers. Hybrid frameworks are emerging,
utilizing multi-stage processing (e.g., feature selection,
rapid ML screening, and final DL inspection) to achieve an
optimal balance of throughput, precision, and security

IRE 1712995

hardening. This survey synthesizes the latest findings and
establishes the placement of these integrated, hybrid
solutions in the broader research domain.

IL. TAXONOMY OF SQL INJECTION
ATTACKS

Before surveying defenses, we define a useful

taxonomy of SQLi attacks:

1. Classic/Inline SQLi: Direct injection that returns
data or raises errors, e.g., '; DROP TABLE users;

2. Obfuscated SQLi: Uses encoding (hex, Unicode),
comments, whitespace, or token splitting to hide
suspicious keywords, e.g., UN/**/ION SELECT.

3. Blind SQLi:

o Boolean-based: The application returns similar
pages but content varies depending on true/false
condition.

o Error-based blind: When the DB server reveals
errors under some conditions.

4. Time-based SQLi: Uses deliberate delays
(SLEEP, pg sleep) to infer conditions by
measuring response time.

5. Second-order SQLi: Payload stored and later
executed in a different context.

6. Polymorphic/Automated SQLi:
generated or mutated by tools/agents to avoid
signatures.

Each variant imposes different detection

Payloads

requirements: obfuscation requires semantic
understanding; blind/time-based attacks require
behavioral and timing analysis.

ICONIC RESEARCH AND ENGINEERING JOURNALS 1485

© DEC 2025 | IRE Journals | Volume 9 Issue 6 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV916-1712995

III. DETECTION TECHNIQUES —
OVERVIEW

Detection approaches can be categorized as:

e Rule/Signature-Based Systems: WAF rules (e.g.,
ModSecurity). Fast but brittle to obfuscation and
polymorphism.

o Static Source Code Analysis: Identifies insecure
query construction patterns (concatenation of user
input). Complements runtime detection but misses
injected payloads at runtime.

e Dynamic/Runtime Anomaly Detection: Monitors
live queries and responses for anomalies.

e Classical ML Methods: Feature vectors (lexical,
syntactic, statistical) fed to classifiers (Logistic
Regression, SVM, Random Forest, XGBoost).

e Deep Learning Methods: Sequence/structure
models (LSTM, CNN, Transformers, CodeBERT)
that learn token patterns or AST structures.

e Hybrid/Ensemble Approaches: Two- or multi-
stage systems combining lightweight, fast
detectors with heavier, more accurate models.

This paper concentrates on hybrid architectures that

leverage feature selection and classical ML as a first

stage and deep learning as a second, deeper stage.

IV. FEATURE ENGINEERING & FEATURE
SELECTION

Feature engineering is crucial for ML/DL

performance. Common feature categories:

o Lexical features: length, number of
quotes/semicolons, special characters, ratio of
non-alphanumeric chars.

o Keyword/Token frequency: counts of SELECT,
UNION, OR, AND, SLEEP, --, etc.

o Syntactic/AST features: nesting depth, number of
subqueries, parse trees.

o Entropy/statistical features: character distribution,
compression ratio.

e Behavioral/timing features: response latency, size
changes, HTTP status codes.

e Contextual features: request headers, user agent,
previous session behavior.

Feature selection reduces dimensionality and noise. y?

(Chi-Square) ranking is often used to select features

most correlated with the malicious/benign class.

Studies report substantial gains in accuracy and

IRE 1712995

reduced overfitting when y*> is applied prior to
classical ML training. Alternatives include mutual
information, recursive feature elimination (RFE), L1
regularization selection, and evolutionary algorithms.

V. CLASSICAL MACHINE LEARNING AS
FAST FILTERS

Classical ML models are computationally efficient
and often used as stage-one filters. Typical workflow:
1. Extract selected feature vectors (after y?).

2. Use fast classifiers: Logistic Regression, Random
Forest, Naive Bayes, XGBoost.

3. Set asymmetric thresholds: aggressively mark
obvious benign queries as safe; flag
ambiguous/suspicious ones for deep analysis.

Advantages:

e Low latency, low resource usage (good for inline
deployment).

e Interpretable: feature importances available for

triage.

Limitations:

o Difficulty capturing semantic/structural
obfuscation that changes tokens but not

semantics.
Hence, hybrid systems delegate complex cases to
deeper models.

VI. DEEP LEARNING FOR SEMANTIC
VERIFICATION

Deep models provide the ability to model sequence

and structure:

e Sequence models (LSTM/BiLSTM/GRU): learn
token-level dependencies; useful for pattern
recognition in token sequences.

e Attention and Transformer encoders: capture
long-range dependencies; faster parallel training
vs RNNs.

e Code-aware models (CodeBERT, Graph Neural
Networks over ASTs): leverage structured
representations and are well-suited to detect
semantic obfuscation.

e Multi-modal models: combine token embeddings
with behavioral/timing inputs.

Deep models are typically triggered only for

suspicious queries (to limit latency). They excel at

detecting obfuscation and polymorphic variants but

ICONIC RESEARCH AND ENGINEERING JOURNALS 1486

© DEC 2025 | IRE Journals | Volume 9 Issue 6 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV916-1712995

require careful training data and computational
resources.

VII. DETECTION OF BLIND AND TIME-
BASED SQLI

Blind and time-based attacks demand behavioral and

timing analysis:

e For Boolean blind: compare responses to logically
opposite probes and model subtle differences in
HTML/text features (content similarity, DOM
changes).

e For Time-based: measure response latency under
controlled probes across multiple trials to detect
statistically significant delays attributable to
SLEEP or similar constructs.

Hybrid systems should incorporate timing features

into both classical and deep stages. Sequence models

can also learn patterns of queries that often

accompany blind/time-based payloads (e.g.,

conditional constructs).

VIII. HYBRID PIPELINE DESIGN PATTERNS

Common hybrid patterns:

1. Filter — Verify: ¥* + Random Forest filter
reduces workload; suspicious queries passed to
Transformer/LSTM.

2. Ensemble Consensus: Multiple independent
classifiers (different features/architectures) vote;
conflicting cases escalated.

3. Cascaded Confidence Thresholds: Confidence
scoring used to decide if a query requires
escalation.

4. Active Probing Module: For suspected blind/time
attacks, system issues controlled probes and
collects behavioral/timing signals for deeper
analysis.

Design tradeoffs: latency vs accuracy, false positives

vs negatives, throughput vs resource consumption.

IX. DATASETS AND EVALUATION
PRACTICES

Public datasets are limited and often synthetic.
Sources used in research include:
e Academic SQLi benchmark datasets (varied

quality).

IRE 1712995

e OWASP labs: DVWA, WebGoat (for synthetic
attack generation).

e Kaggle submissions and ad-hoc corpora.

e Custom datasets generated with tools (sqlmap)
and LLM/Text-to-SQL generators.

Evaluation metrics: Precision, Recall, F1, ROC-

AUC, False Positive Rate (FPR), detection latency,

throughput. Robust evaluation must include

obfuscation transformations, blind/time-based

queries, and cross-domain generalization tests.

A persistent problem is a lack of large, diverse,
publicly available datasets that include obfuscated
and behavioral variants. Researchers often augment
datasets with synthetic examples (template mutation,
encoding transformations) and generative models
(VAE/GAN) to broaden attack coverage.

X. COMPARATIVE ANALYSIS: STRENGTHS
& WEAKNESSES

e Rule-based / WAFs: Simple, low latency, but
brittle to obfuscation and polymorphism.

e C(lassical ML alone: Fast and interpretable,
struggles with semantic obfuscation and
blind/time channels.

e Deep Learning alone: High detection potential for
obfuscation, but costly and risk of overfitting to
limited datasets.

e Hybrid (Feature-Selection + ML + DL): Balanced
— good latency via filtering, semantic
understanding via DL, and lower overall resource
use when appropriately staged.

Hybrid systems show the most promise for real-world

deployments where throughput and robustness must

be balanced.

XI. CHALLENGES & OPEN PROBLEMS

1. Dataset scarcity & realism: Need for large,
labeled corpora covering obfuscation, blind, time-
based, polymorphic, and code-generated SQL.

2. Adversarial adaptation: Attackers can adapt to
ML/DL detectors; adversarial training and
continual updating are required.

3. False positives: High FPR has operational costs
— triage and human-in-the-loop mechanisms are
necessary.

ICONIC RESEARCH AND ENGINEERING JOURNALS 1487

© DEC 2025 | IRE Journals | Volume 9 Issue 6 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV916-1712995

4. Latency and deployment: Ensuring DL
verification does not introduce unacceptable
delays in live systems.

5. Data privacy & log access: Access to production
logs is sensitive — anonymization and privacy-
preserving collection are required.

6. Explainability: Security teams need interpretable
alerts to act; deep models tend to be opaque.

7. Testing for blind/time-based attacks in noisy
networks: Distinguishing attack-induced delays
from network jitter is nontrivial.

8. Security of automated pipelines: LLM/Text-to-
SQL vulnerabilities and model backdoors can
create new injection vectors.

XII. FUTURE RESEARCH DIRECTIONS

Promising directions include:

e Benchmark corpus creation: community efforts to
publish large, annotated datasets with obfuscation
and timing labels.

e Adversarially robust models: defenses against
polymorphic payload evolution and adversarial
examples.

o Lightweight code-aware transformers: optimized
models (quantized/pruned) suitable for inline
deployment.

e Active probing modules: safe probing strategies
for blind/time detection with low false positive
rates.

e Explainable hybrid systems: methods to provide
human-readable explanations for DL decisions.

e Continuous learning pipelines: safe online
retraining and concept-drift handling in
production.

e Integration with secure code generation: vetting
and hardening Text-to-SQL and Al code
generation pipelines.

e Privacy-preserving telemetry: federated or
differentially private learning across

organizations.

XIII. CONCLUSION
Hybrid detection frameworks that combine feature
selection, classical ML filters, and deep learning

verification are well positioned to address
contemporary SQLi threats — particularly

IRE 1712995

obfuscated, blind, and time-based attacks. While the
hybrid approach brings a pragmatic balance of speed
and semantic power, success depends on rigorous
dataset construction, adversarial robustness,
deployment strategies that manage latency, and
human-oriented explainability. This survey outlined
the landscape, summarized current methods,
highlighted gaps, and proposed actionable research
directions that a PhD program can pursue to make
meaningful advances.

REFERENCES

[1] C. Anley, “Advanced SQL Injection in SQL
Server Applications,” NGSSoftware Insight
Security Research, 2002.

[2] I. Guyon and A. Elisseeff, “An introduction to
variable and feature selection,” Journal of
Machine Learning Research, vol. 3, pp. 1157—
1182, 2003.

[3] W. G. Halfond, J. Viegas, and A. Orso, “A
classification of SQL-injection attacks and
countermeasures,” in Proc. IEEE Int. Symp.
Secure Software Engineering, 2006, pp. 13—15.

[4] W. G. Halfond and A. Orso, “Preventing SQL
injection attacks using AMNESIA,” in Proc.
28th Int. Conf. Software Engineering (ICSE),
2006, pp. 795-798.

[5] S. Bandhakavi, P. Bisht, P. Madhusudan, and V.
N. Venkatakrishnan, “CANDID: Preventing
SQL injection attacks using dynamic candidate
evaluations,” in Proc. 14th ACM Conf.
Computer and Communications Security (CCS),
2007, pp. 12-24.

[6] R. Valeur, D. Mutz, and G. Vigna, “A learning-
based approach to the detection of SQL
attacks,” in Proc. Int. Conf. Detection of
Intrusions and Malware & Vulnerability
Assessment (DIMVA), 2005, pp. 123—140.

[7] J. Newsome, B. Karp, and D. Song, “Polygraph:
Automatically generating signatures for
polymorphic worms,” in Proc. IEEE Symp.
Security and Privacy, 2005, pp. 226-241.

[8] A. Tajpour, M. J. Z. Ghahramani, and H. Ibrahim,
“SQL injection detection using machine
learning,” in Proc. Int. Conf. Education and
Management Technology, 2010, pp. 40—43.

ICONIC RESEARCH AND ENGINEERING JOURNALS 1488

© DEC 2025 | IRE Journals | Volume 9 Issue 6 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV916-1712995

[9] R. Karimi, M. Fathy, and M. P. Fard, “Detection
of SQL injection attacks using machine learning
based techniques,” Int. J. Computer Science and
Information Security, vol. 8, no. 6, pp. 1-6,
2010.

[10] J. Kim, J. Kim, and S. Kim, “SQL injection
attack detection using character distribution and
entropy analysis,” [EEE Access, vol. 7, pp.
162202-162214, 2019.

[11] Y. Zhang, Q. Zhang, and J. Yang, “Detecting
SQL injection attacks using deep learning,”
Future Generation Computer Systems, vol. 102,
pp. 557-566, 2020.

[12] Z. Chen, J. Meng, and Y. Li, “Detecting SQL
injection attacks based on convolutional neural
networks,” Applied Sciences, vol. 10, no. 3, pp.
1-17, 2020.

[13] M. Roichman and R. Gudes, “Fine-grained
access control to web databases,” in Proc. ACM
Conf. Computer and Communications Security
(CCS), 2007, pp. 31-40.

[14] T. Mikolov et al., “Efficient estimation of word
representations in vector space,” in Proc. Int.
Conf. Learning Representations (ICLR), 2013.

IRE 1712995 ICONIC RESEARCH AND ENGINEERING JOURNALS 1489

