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Abstract- SQL Injection (SQLi) remains one of the most 

persistent and damaging classes of web application 

vulnerabilities. As attackers adopt more sophisticated 

techniques — obfuscation, blind channels, and time-

based inference — traditional detection techniques 

(rule/signature based and shallow ML) show limited 

robustness. Recently, hybrid approaches that combine 

feature selection, classical machine learning (ML) for fast 

filtering, and deep learning (DL) for semantic verification 

have gained traction. This survey thoroughly analyzes 

contemporary SQL Injection (SQLi) detection methods, 

specifically focusing on hybrid architectures capable of 

identifying obfuscated, blind, and time-based variants. 

This section details the SQLi attack taxonomy and 

corresponding defensive mechanisms. It further explores 

the application of advanced feature engineering 

techniques, such as Chi-Square ranking, to enhance 

detection. The analysis concludes with a performance 

evaluation (benchmarking) of both Machine Learning 

(ML) and Deep Learning (DL) models employed in this 

security domain. 

 

I. INTRODUCTION 

 

SQL Injection (SQLi) constitutes a persistent, high-severity 

threat to web application confidentiality and integrity. The 

attack exploits input sanitization failures, enabling the 

injection of adversarial SQL fragments to illegally modify 

or bypass legitimate database operations. Current attacker 

methodologies necessitate detection systems capable of 

mitigating advanced evasion techniques, notably payload 

obfuscation, blind SQLi, and time-based data retrieval 

strategies. These variants are challenging because they 

often leave little or no overt evidence in typical logs, and 

they are engineered to bypass common filters. 

Detection techniques vary from Static Application Security 

Testing (SAST) and rule-based WAFs to data-centric 

ML/DL classifiers. Hybrid frameworks are emerging, 

utilizing multi-stage processing (e.g., feature selection, 

rapid ML screening, and final DL inspection) to achieve an 

optimal balance of throughput, precision, and security 

hardening. This survey synthesizes the latest findings and 

establishes the placement of these integrated, hybrid 

solutions in the broader research domain. 

 

II. TAXONOMY OF SQL INJECTION 

ATTACKS 

 

Before surveying defenses, we define a useful 

taxonomy of SQLi attacks: 

1. Classic/Inline SQLi: Direct injection that returns 

data or raises errors, e.g., '; DROP TABLE users; 

--. 

2. Obfuscated SQLi: Uses encoding (hex, Unicode), 

comments, whitespace, or token splitting to hide 

suspicious keywords, e.g., UN/**/ION SELECT. 

3. Blind SQLi: 

o Boolean-based: The application returns similar 

pages but content varies depending on true/false 

condition. 

o Error-based blind: When the DB server reveals 

errors under some conditions. 

4. Time-based SQLi: Uses deliberate delays 

(SLEEP, pg_sleep) to infer conditions by 

measuring response time. 

5. Second-order SQLi: Payload stored and later 

executed in a different context. 

6. Polymorphic/Automated SQLi: Payloads 

generated or mutated by tools/agents to avoid 

signatures. 

Each variant imposes different detection 

requirements: obfuscation requires semantic 

understanding; blind/time-based attacks require 

behavioral and timing analysis. 
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III. DETECTION TECHNIQUES — 

OVERVIEW 

 

Detection approaches can be categorized as: 

• Rule/Signature-Based Systems: WAF rules (e.g., 

ModSecurity). Fast but brittle to obfuscation and 

polymorphism. 

• Static Source Code Analysis: Identifies insecure 

query construction patterns (concatenation of user 

input). Complements runtime detection but misses 

injected payloads at runtime. 

• Dynamic/Runtime Anomaly Detection: Monitors 

live queries and responses for anomalies. 

• Classical ML Methods: Feature vectors (lexical, 

syntactic, statistical) fed to classifiers (Logistic 

Regression, SVM, Random Forest, XGBoost). 

• Deep Learning Methods: Sequence/structure 

models (LSTM, CNN, Transformers, CodeBERT) 

that learn token patterns or AST structures. 

• Hybrid/Ensemble Approaches: Two- or multi-

stage systems combining lightweight, fast 

detectors with heavier, more accurate models. 

This paper concentrates on hybrid architectures that 

leverage feature selection and classical ML as a first 

stage and deep learning as a second, deeper stage. 

 

IV. FEATURE ENGINEERING & FEATURE 

SELECTION 

 

Feature engineering is crucial for ML/DL 

performance. Common feature categories: 

• Lexical features: length, number of 

quotes/semicolons, special characters, ratio of 

non-alphanumeric chars. 

• Keyword/Token frequency: counts of SELECT, 

UNION, OR, AND, SLEEP, --, etc. 

• Syntactic/AST features: nesting depth, number of 

subqueries, parse trees. 

• Entropy/statistical features: character distribution, 

compression ratio. 

• Behavioral/timing features: response latency, size 

changes, HTTP status codes. 

• Contextual features: request headers, user agent, 

previous session behavior. 

Feature selection reduces dimensionality and noise. χ² 

(Chi-Square) ranking is often used to select features 

most correlated with the malicious/benign class. 

Studies report substantial gains in accuracy and 

reduced overfitting when χ² is applied prior to 

classical ML training. Alternatives include mutual 

information, recursive feature elimination (RFE), L1 

regularization selection, and evolutionary algorithms. 

 

V. CLASSICAL MACHINE LEARNING AS 

FAST FILTERS 

 

Classical ML models are computationally efficient 

and often used as stage-one filters. Typical workflow: 

1. Extract selected feature vectors (after χ²). 

2. Use fast classifiers: Logistic Regression, Random 

Forest, Naive Bayes, XGBoost. 

3. Set asymmetric thresholds: aggressively mark 

obvious benign queries as safe; flag 

ambiguous/suspicious ones for deep analysis. 

Advantages: 

• Low latency, low resource usage (good for inline 

deployment). 

• Interpretable: feature importances available for 

triage. 

Limitations: 

• Difficulty capturing semantic/structural 

obfuscation that changes tokens but not 

semantics. 

Hence, hybrid systems delegate complex cases to 

deeper models. 

 

VI. DEEP LEARNING FOR SEMANTIC 

VERIFICATION 

 

Deep models provide the ability to model sequence 

and structure: 

• Sequence models (LSTM/BiLSTM/GRU): learn 

token-level dependencies; useful for pattern 

recognition in token sequences. 

• Attention and Transformer encoders: capture 

long-range dependencies; faster parallel training 

vs RNNs. 

• Code-aware models (CodeBERT, Graph Neural 

Networks over ASTs): leverage structured 

representations and are well-suited to detect 

semantic obfuscation. 

• Multi-modal models: combine token embeddings 

with behavioral/timing inputs. 

Deep models are typically triggered only for 

suspicious queries (to limit latency). They excel at 

detecting obfuscation and polymorphic variants but 
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require careful training data and computational 

resources. 

 

VII. DETECTION OF BLIND AND TIME-

BASED SQLI 

 

Blind and time-based attacks demand behavioral and 

timing analysis: 

• For Boolean blind: compare responses to logically 

opposite probes and model subtle differences in 

HTML/text features (content similarity, DOM 

changes). 

• For Time-based: measure response latency under 

controlled probes across multiple trials to detect 

statistically significant delays attributable to 

SLEEP or similar constructs. 

Hybrid systems should incorporate timing features 

into both classical and deep stages. Sequence models 

can also learn patterns of queries that often 

accompany blind/time-based payloads (e.g., 

conditional constructs). 

 

VIII. HYBRID PIPELINE DESIGN PATTERNS 

 

Common hybrid patterns: 

1. Filter → Verify: χ² + Random Forest filter 

reduces workload; suspicious queries passed to 

Transformer/LSTM. 

2. Ensemble Consensus: Multiple independent 

classifiers (different features/architectures) vote; 

conflicting cases escalated. 

3. Cascaded Confidence Thresholds: Confidence 

scoring used to decide if a query requires 

escalation. 

4. Active Probing Module: For suspected blind/time 

attacks, system issues controlled probes and 

collects behavioral/timing signals for deeper 

analysis. 

Design tradeoffs: latency vs accuracy, false positives 

vs negatives, throughput vs resource consumption. 

 

IX. DATASETS AND EVALUATION 

PRACTICES 

 

Public datasets are limited and often synthetic. 

Sources used in research include: 

• Academic SQLi benchmark datasets (varied 

quality). 

• OWASP labs: DVWA, WebGoat (for synthetic 

attack generation). 

• Kaggle submissions and ad-hoc corpora. 

• Custom datasets generated with tools (sqlmap) 

and LLM/Text-to-SQL generators. 

Evaluation metrics: Precision, Recall, F1, ROC-

AUC, False Positive Rate (FPR), detection latency, 

throughput. Robust evaluation must include 

obfuscation transformations, blind/time-based 

queries, and cross-domain generalization tests. 

 

A persistent problem is a lack of large, diverse, 

publicly available datasets that include obfuscated 

and behavioral variants. Researchers often augment 

datasets with synthetic examples (template mutation, 

encoding transformations) and generative models 

(VAE/GAN) to broaden attack coverage. 

 

X. COMPARATIVE ANALYSIS: STRENGTHS 

& WEAKNESSES 

• Rule-based / WAFs: Simple, low latency, but 

brittle to obfuscation and polymorphism. 

• Classical ML alone: Fast and interpretable, 

struggles with semantic obfuscation and 

blind/time channels. 

• Deep Learning alone: High detection potential for 

obfuscation, but costly and risk of overfitting to 

limited datasets. 

• Hybrid (Feature-Selection + ML + DL): Balanced 

— good latency via filtering, semantic 

understanding via DL, and lower overall resource 

use when appropriately staged. 

Hybrid systems show the most promise for real-world 

deployments where throughput and robustness must 

be balanced. 

 

XI. CHALLENGES & OPEN PROBLEMS 

 

1. Dataset scarcity & realism: Need for large, 

labeled corpora covering obfuscation, blind, time-

based, polymorphic, and code-generated SQL. 

2. Adversarial adaptation: Attackers can adapt to 

ML/DL detectors; adversarial training and 

continual updating are required. 

3. False positives: High FPR has operational costs 

— triage and human-in-the-loop mechanisms are 

necessary. 



© DEC 2025 | IRE Journals | Volume 9 Issue 6 | ISSN: 2456-8880 
DOI: https://doi.org/10.64388/IREV9I6-1712995 

IRE 1712995          ICONIC RESEARCH AND ENGINEERING JOURNALS 1488 

4. Latency and deployment: Ensuring DL 

verification does not introduce unacceptable 

delays in live systems. 

5. Data privacy & log access: Access to production 

logs is sensitive — anonymization and privacy-

preserving collection are required. 

6. Explainability: Security teams need interpretable 

alerts to act; deep models tend to be opaque. 

7. Testing for blind/time-based attacks in noisy 

networks: Distinguishing attack-induced delays 

from network jitter is nontrivial. 

8. Security of automated pipelines: LLM/Text-to-

SQL vulnerabilities and model backdoors can 

create new injection vectors. 

 

XII. FUTURE RESEARCH DIRECTIONS 

 

Promising directions include: 

• Benchmark corpus creation: community efforts to 

publish large, annotated datasets with obfuscation 

and timing labels. 

• Adversarially robust models: defenses against 

polymorphic payload evolution and adversarial 

examples. 

• Lightweight code-aware transformers: optimized 

models (quantized/pruned) suitable for inline 

deployment. 

• Active probing modules: safe probing strategies 

for blind/time detection with low false positive 

rates. 

• Explainable hybrid systems: methods to provide 

human-readable explanations for DL decisions. 

• Continuous learning pipelines: safe online 

retraining and concept-drift handling in 

production. 

• Integration with secure code generation: vetting 

and hardening Text-to-SQL and AI code 

generation pipelines. 

• Privacy-preserving telemetry: federated or 

differentially private learning across 

organizations. 

 

XIII. CONCLUSION 

 

Hybrid detection frameworks that combine feature 

selection, classical ML filters, and deep learning 

verification are well positioned to address 

contemporary SQLi threats — particularly 

obfuscated, blind, and time-based attacks. While the 

hybrid approach brings a pragmatic balance of speed 

and semantic power, success depends on rigorous 

dataset construction, adversarial robustness, 

deployment strategies that manage latency, and 

human-oriented explainability. This survey outlined 

the landscape, summarized current methods, 

highlighted gaps, and proposed actionable research 

directions that a PhD program can pursue to make 

meaningful advances. 
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