
© DEC 2025 | IRE Journals | Volume 9 Issue 6 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I6-1712995

IRE 1712995 ICONIC RESEARCH AND ENGINEERING JOURNALS 1485

A Survey on Hybrid SQL Injection Detection: Feature-
Selection, Classical Machine Learning, and Deep

Learning Approaches to Obfuscated, Blind, and Time-
Based SQLi

PUSHKAR Y JANE1, ROSHANI K MUKADAM2
1 Department of Computer Science & Information Technology, Chhatrapati Shivaji Maharaj University,

Panvel, Navi Mumbai
2 Department of Computer Science & Information Technology, Chhatrapati Shivaji Maharaj University,

Panvel, Navi Mumbai

Abstract- SQL Injection (SQLi) remains one of the most

persistent and damaging classes of web application

vulnerabilities. As attackers adopt more sophisticated

techniques — obfuscation, blind channels, and time-

based inference — traditional detection techniques

(rule/signature based and shallow ML) show limited

robustness. Recently, hybrid approaches that combine

feature selection, classical machine learning (ML) for fast

filtering, and deep learning (DL) for semantic verification

have gained traction. This survey thoroughly analyzes

contemporary SQL Injection (SQLi) detection methods,

specifically focusing on hybrid architectures capable of

identifying obfuscated, blind, and time-based variants.

This section details the SQLi attack taxonomy and

corresponding defensive mechanisms. It further explores

the application of advanced feature engineering

techniques, such as Chi-Square ranking, to enhance

detection. The analysis concludes with a performance

evaluation (benchmarking) of both Machine Learning

(ML) and Deep Learning (DL) models employed in this

security domain.

I. INTRODUCTION

SQL Injection (SQLi) constitutes a persistent, high-severity

threat to web application confidentiality and integrity. The

attack exploits input sanitization failures, enabling the

injection of adversarial SQL fragments to illegally modify

or bypass legitimate database operations. Current attacker

methodologies necessitate detection systems capable of

mitigating advanced evasion techniques, notably payload

obfuscation, blind SQLi, and time-based data retrieval

strategies. These variants are challenging because they

often leave little or no overt evidence in typical logs, and

they are engineered to bypass common filters.

Detection techniques vary from Static Application Security

Testing (SAST) and rule-based WAFs to data-centric

ML/DL classifiers. Hybrid frameworks are emerging,

utilizing multi-stage processing (e.g., feature selection,

rapid ML screening, and final DL inspection) to achieve an

optimal balance of throughput, precision, and security

hardening. This survey synthesizes the latest findings and

establishes the placement of these integrated, hybrid

solutions in the broader research domain.

II. TAXONOMY OF SQL INJECTION

ATTACKS

Before surveying defenses, we define a useful

taxonomy of SQLi attacks:

1. Classic/Inline SQLi: Direct injection that returns

data or raises errors, e.g., '; DROP TABLE users;

--.

2. Obfuscated SQLi: Uses encoding (hex, Unicode),

comments, whitespace, or token splitting to hide

suspicious keywords, e.g., UN/**/ION SELECT.

3. Blind SQLi:

o Boolean-based: The application returns similar

pages but content varies depending on true/false

condition.

o Error-based blind: When the DB server reveals

errors under some conditions.

4. Time-based SQLi: Uses deliberate delays

(SLEEP, pg_sleep) to infer conditions by

measuring response time.

5. Second-order SQLi: Payload stored and later

executed in a different context.

6. Polymorphic/Automated SQLi: Payloads

generated or mutated by tools/agents to avoid

signatures.

Each variant imposes different detection

requirements: obfuscation requires semantic

understanding; blind/time-based attacks require

behavioral and timing analysis.

© DEC 2025 | IRE Journals | Volume 9 Issue 6 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I6-1712995

IRE 1712995 ICONIC RESEARCH AND ENGINEERING JOURNALS 1486

III. DETECTION TECHNIQUES —

OVERVIEW

Detection approaches can be categorized as:

• Rule/Signature-Based Systems: WAF rules (e.g.,

ModSecurity). Fast but brittle to obfuscation and

polymorphism.

• Static Source Code Analysis: Identifies insecure

query construction patterns (concatenation of user

input). Complements runtime detection but misses

injected payloads at runtime.

• Dynamic/Runtime Anomaly Detection: Monitors

live queries and responses for anomalies.

• Classical ML Methods: Feature vectors (lexical,

syntactic, statistical) fed to classifiers (Logistic

Regression, SVM, Random Forest, XGBoost).

• Deep Learning Methods: Sequence/structure

models (LSTM, CNN, Transformers, CodeBERT)

that learn token patterns or AST structures.

• Hybrid/Ensemble Approaches: Two- or multi-

stage systems combining lightweight, fast

detectors with heavier, more accurate models.

This paper concentrates on hybrid architectures that

leverage feature selection and classical ML as a first

stage and deep learning as a second, deeper stage.

IV. FEATURE ENGINEERING & FEATURE

SELECTION

Feature engineering is crucial for ML/DL

performance. Common feature categories:

• Lexical features: length, number of

quotes/semicolons, special characters, ratio of

non-alphanumeric chars.

• Keyword/Token frequency: counts of SELECT,

UNION, OR, AND, SLEEP, --, etc.

• Syntactic/AST features: nesting depth, number of

subqueries, parse trees.

• Entropy/statistical features: character distribution,

compression ratio.

• Behavioral/timing features: response latency, size

changes, HTTP status codes.

• Contextual features: request headers, user agent,

previous session behavior.

Feature selection reduces dimensionality and noise. χ²

(Chi-Square) ranking is often used to select features

most correlated with the malicious/benign class.

Studies report substantial gains in accuracy and

reduced overfitting when χ² is applied prior to

classical ML training. Alternatives include mutual

information, recursive feature elimination (RFE), L1

regularization selection, and evolutionary algorithms.

V. CLASSICAL MACHINE LEARNING AS

FAST FILTERS

Classical ML models are computationally efficient

and often used as stage-one filters. Typical workflow:

1. Extract selected feature vectors (after χ²).

2. Use fast classifiers: Logistic Regression, Random

Forest, Naive Bayes, XGBoost.

3. Set asymmetric thresholds: aggressively mark

obvious benign queries as safe; flag

ambiguous/suspicious ones for deep analysis.

Advantages:

• Low latency, low resource usage (good for inline

deployment).

• Interpretable: feature importances available for

triage.

Limitations:

• Difficulty capturing semantic/structural

obfuscation that changes tokens but not

semantics.

Hence, hybrid systems delegate complex cases to

deeper models.

VI. DEEP LEARNING FOR SEMANTIC

VERIFICATION

Deep models provide the ability to model sequence

and structure:

• Sequence models (LSTM/BiLSTM/GRU): learn

token-level dependencies; useful for pattern

recognition in token sequences.

• Attention and Transformer encoders: capture

long-range dependencies; faster parallel training

vs RNNs.

• Code-aware models (CodeBERT, Graph Neural

Networks over ASTs): leverage structured

representations and are well-suited to detect

semantic obfuscation.

• Multi-modal models: combine token embeddings

with behavioral/timing inputs.

Deep models are typically triggered only for

suspicious queries (to limit latency). They excel at

detecting obfuscation and polymorphic variants but

© DEC 2025 | IRE Journals | Volume 9 Issue 6 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I6-1712995

IRE 1712995 ICONIC RESEARCH AND ENGINEERING JOURNALS 1487

require careful training data and computational

resources.

VII. DETECTION OF BLIND AND TIME-

BASED SQLI

Blind and time-based attacks demand behavioral and

timing analysis:

• For Boolean blind: compare responses to logically

opposite probes and model subtle differences in

HTML/text features (content similarity, DOM

changes).

• For Time-based: measure response latency under

controlled probes across multiple trials to detect

statistically significant delays attributable to

SLEEP or similar constructs.

Hybrid systems should incorporate timing features

into both classical and deep stages. Sequence models

can also learn patterns of queries that often

accompany blind/time-based payloads (e.g.,

conditional constructs).

VIII. HYBRID PIPELINE DESIGN PATTERNS

Common hybrid patterns:

1. Filter → Verify: χ² + Random Forest filter

reduces workload; suspicious queries passed to

Transformer/LSTM.

2. Ensemble Consensus: Multiple independent

classifiers (different features/architectures) vote;

conflicting cases escalated.

3. Cascaded Confidence Thresholds: Confidence

scoring used to decide if a query requires

escalation.

4. Active Probing Module: For suspected blind/time

attacks, system issues controlled probes and

collects behavioral/timing signals for deeper

analysis.

Design tradeoffs: latency vs accuracy, false positives

vs negatives, throughput vs resource consumption.

IX. DATASETS AND EVALUATION

PRACTICES

Public datasets are limited and often synthetic.

Sources used in research include:

• Academic SQLi benchmark datasets (varied

quality).

• OWASP labs: DVWA, WebGoat (for synthetic

attack generation).

• Kaggle submissions and ad-hoc corpora.

• Custom datasets generated with tools (sqlmap)

and LLM/Text-to-SQL generators.

Evaluation metrics: Precision, Recall, F1, ROC-

AUC, False Positive Rate (FPR), detection latency,

throughput. Robust evaluation must include

obfuscation transformations, blind/time-based

queries, and cross-domain generalization tests.

A persistent problem is a lack of large, diverse,

publicly available datasets that include obfuscated

and behavioral variants. Researchers often augment

datasets with synthetic examples (template mutation,

encoding transformations) and generative models

(VAE/GAN) to broaden attack coverage.

X. COMPARATIVE ANALYSIS: STRENGTHS

& WEAKNESSES

• Rule-based / WAFs: Simple, low latency, but

brittle to obfuscation and polymorphism.

• Classical ML alone: Fast and interpretable,

struggles with semantic obfuscation and

blind/time channels.

• Deep Learning alone: High detection potential for

obfuscation, but costly and risk of overfitting to

limited datasets.

• Hybrid (Feature-Selection + ML + DL): Balanced

— good latency via filtering, semantic

understanding via DL, and lower overall resource

use when appropriately staged.

Hybrid systems show the most promise for real-world

deployments where throughput and robustness must

be balanced.

XI. CHALLENGES & OPEN PROBLEMS

1. Dataset scarcity & realism: Need for large,

labeled corpora covering obfuscation, blind, time-

based, polymorphic, and code-generated SQL.

2. Adversarial adaptation: Attackers can adapt to

ML/DL detectors; adversarial training and

continual updating are required.

3. False positives: High FPR has operational costs

— triage and human-in-the-loop mechanisms are

necessary.

© DEC 2025 | IRE Journals | Volume 9 Issue 6 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I6-1712995

IRE 1712995 ICONIC RESEARCH AND ENGINEERING JOURNALS 1488

4. Latency and deployment: Ensuring DL

verification does not introduce unacceptable

delays in live systems.

5. Data privacy & log access: Access to production

logs is sensitive — anonymization and privacy-

preserving collection are required.

6. Explainability: Security teams need interpretable

alerts to act; deep models tend to be opaque.

7. Testing for blind/time-based attacks in noisy

networks: Distinguishing attack-induced delays

from network jitter is nontrivial.

8. Security of automated pipelines: LLM/Text-to-

SQL vulnerabilities and model backdoors can

create new injection vectors.

XII. FUTURE RESEARCH DIRECTIONS

Promising directions include:

• Benchmark corpus creation: community efforts to

publish large, annotated datasets with obfuscation

and timing labels.

• Adversarially robust models: defenses against

polymorphic payload evolution and adversarial

examples.

• Lightweight code-aware transformers: optimized

models (quantized/pruned) suitable for inline

deployment.

• Active probing modules: safe probing strategies

for blind/time detection with low false positive

rates.

• Explainable hybrid systems: methods to provide

human-readable explanations for DL decisions.

• Continuous learning pipelines: safe online

retraining and concept-drift handling in

production.

• Integration with secure code generation: vetting

and hardening Text-to-SQL and AI code

generation pipelines.

• Privacy-preserving telemetry: federated or

differentially private learning across

organizations.

XIII. CONCLUSION

Hybrid detection frameworks that combine feature

selection, classical ML filters, and deep learning

verification are well positioned to address

contemporary SQLi threats — particularly

obfuscated, blind, and time-based attacks. While the

hybrid approach brings a pragmatic balance of speed

and semantic power, success depends on rigorous

dataset construction, adversarial robustness,

deployment strategies that manage latency, and

human-oriented explainability. This survey outlined

the landscape, summarized current methods,

highlighted gaps, and proposed actionable research

directions that a PhD program can pursue to make

meaningful advances.

REFERENCES

[1] C. Anley, “Advanced SQL Injection in SQL

Server Applications,” NGSSoftware Insight

Security Research, 2002.

[2] I. Guyon and A. Elisseeff, “An introduction to

variable and feature selection,” Journal of

Machine Learning Research, vol. 3, pp. 1157–

1182, 2003.

[3] W. G. Halfond, J. Viegas, and A. Orso, “A

classification of SQL-injection attacks and

countermeasures,” in Proc. IEEE Int. Symp.

Secure Software Engineering, 2006, pp. 13–15.

[4] W. G. Halfond and A. Orso, “Preventing SQL

injection attacks using AMNESIA,” in Proc.

28th Int. Conf. Software Engineering (ICSE),

2006, pp. 795–798.

[5] S. Bandhakavi, P. Bisht, P. Madhusudan, and V.

N. Venkatakrishnan, “CANDID: Preventing

SQL injection attacks using dynamic candidate

evaluations,” in Proc. 14th ACM Conf.

Computer and Communications Security (CCS),

2007, pp. 12–24.

[6] R. Valeur, D. Mutz, and G. Vigna, “A learning-

based approach to the detection of SQL

attacks,” in Proc. Int. Conf. Detection of

Intrusions and Malware & Vulnerability

Assessment (DIMVA), 2005, pp. 123–140.

[7] J. Newsome, B. Karp, and D. Song, “Polygraph:

Automatically generating signatures for

polymorphic worms,” in Proc. IEEE Symp.

Security and Privacy, 2005, pp. 226–241.

[8] A. Tajpour, M. J. Z. Ghahramani, and H. Ibrahim,

“SQL injection detection using machine

learning,” in Proc. Int. Conf. Education and

Management Technology, 2010, pp. 40–43.

© DEC 2025 | IRE Journals | Volume 9 Issue 6 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I6-1712995

IRE 1712995 ICONIC RESEARCH AND ENGINEERING JOURNALS 1489

[9] R. Karimi, M. Fathy, and M. P. Fard, “Detection

of SQL injection attacks using machine learning

based techniques,” Int. J. Computer Science and

Information Security, vol. 8, no. 6, pp. 1–6,

2010.

[10] J. Kim, J. Kim, and S. Kim, “SQL injection

attack detection using character distribution and

entropy analysis,” IEEE Access, vol. 7, pp.

162202–162214, 2019.

[11] Y. Zhang, Q. Zhang, and J. Yang, “Detecting

SQL injection attacks using deep learning,”

Future Generation Computer Systems, vol. 102,

pp. 557–566, 2020.

[12] Z. Chen, J. Meng, and Y. Li, “Detecting SQL

injection attacks based on convolutional neural

networks,” Applied Sciences, vol. 10, no. 3, pp.

1–17, 2020.

[13] M. Roichman and R. Gudes, “Fine-grained

access control to web databases,” in Proc. ACM

Conf. Computer and Communications Security

(CCS), 2007, pp. 31–40.

[14] T. Mikolov et al., “Efficient estimation of word

representations in vector space,” in Proc. Int.

Conf. Learning Representations (ICLR), 2013.

