

A Comparative Analysis of Graphical and Voice User Interfaces in Human-Computer Interaction

M. J. UGOBOGO¹, O. O. OMONIJO², A. O. OLATEJU³, A. KABIRU⁴, E. C. MOYE⁵

^{1,2,3,4}Computer Science Unit, Nigeria Maritime University, Okerenkoko, Delta State, Nigeria

⁵Department of Computing and Informatics, Federal Cooperative College, Ibadan, Oyo State, Nigeria

Abstract: Human-Computer Interaction (HCI) has evolved from command-driven systems to user-centered designs that prioritize usability, accessibility, and user experience (UX). In this study, a comparative analysis of Graphical User Interfaces (GUIs) and Voice User Interfaces (VUIs) was carried out in order to examine their relative effectiveness in contemporary interaction design. A heuristic evaluation based on Nielsen's usability principles and the ISO 9241-11 usability framework was used to assess the usability, accessibility, and user experience (UX) of four widely used systems: Google Assistant and Duolingo (VUIs) and Microsoft Word and WhatsApp (GUIs). The findings show that GUIs achieved higher mean performance in terms of usability (4.6) and accessibility (4.4), which indicate developed visual conventions, strong error control, and inclusive design elements. VUIs, on the other hand, showed a better user experience (4.2), with conversational fluency, natural interaction, and emotional engagement. These findings show a functional-emotional trade-off. While VUIs improve immersion and contextual interaction, GUIs provide precision and predictability. Critical gaps in existing HCI practice are also identified by the study, including a lack of context-aware multimodal integration, underdeveloped accessibility frameworks for voice interaction, and a dependence on static evaluation techniques in spite of quickly developing AI-driven interfaces. The study comes to the conclusion that there is no single interface paradigm that is always better; instead, adaptive, multimodal integration that reacts to task demands, user characteristics, and real-world situations is necessary for good HCI design.

Index Terms- Usability, Accessibility, User Experience (UX), Human-Computer Interaction, Multimodal Design

I. INTRODUCTION

The research field of Human-Computer Interaction (HCI) is a dynamic multidisciplinary field that examines the designs and implementation of interactive computer systems, conducts user studies, and evaluates interactive computing systems, with a focus on understanding usability principles, performance, and user experience (UX) [1]. Since

the mid-20th century, and with the emergence of interactive computing, the design of interactive systems has evolved from text-based command lines to visually rich graphical environments and even, more recently, to natural and multimodal interfaces such as voice-controlled assistants, augmented-reality dashboards, and gesture-based platforms [2]. This evolution is evidence of the continuous attempt to improve technology by making them more intuitive, inclusive, and human-centered [3].

For a very long time, Graphical User Interfaces (GUIs) have served as the predominant HCI medium which enables users to interact through visual representations, icons, and structured menus. GUIs revolutionized interaction and/or usability by simplifying system navigation and reducing reliance on textual or command-based inputs [4]. However, as the prevalence of mobile computing and Artificial Intelligence (AI) continues to grow, Voice User Interfaces (VUIs) have emerged as an alternative interaction paradigm that emphasizes natural language and speech-based communication [5], [6]. Voice interfaces systems such as Apple's Siri, Google Assistant, and Amazon Alexa facilitates conversational, context-aware engagement which reduces cognitive load and supports accessibility for users with visual or motor limitations [7], [8]. Despite a surge in popularity growth of this systems, VUIs continue to face several challenges. These challenges include speech-recognition inaccuracies, privacy concerns, and environmental sensitivity that affect performance consistency [9]. Studies have also shown that the context of use of these systems also significantly influences the success of VUIs, hence, making design considerations such as user expectations, cultural background, and situational awareness essential [7]. Conversely, when overloaded with information, more stable and predictable GUIs can become visually or cognitively demanding, thereby, limiting their adaptability to dynamic contexts [10].

It is now more important than ever to compare GUI and VUI modalities so as to identify their relative strengths and limitations. While VUIs offer natural engagement, accessibility, and hands-free convenience, GUIs are known for their visual precision, predictability, and control [11]. Jha et al [8] pointed out that VUIs enhance accessibility among users with disabilities, while Wang et al [4] and Buchta et al [12] highlighted GUIs' continued dominance in structured, task-intensive environments. Other researcher suggests that no interface type universally outperforms another; rather, the optimal modality depends on task demands, user characteristics, and interaction contexts [6], [13].

The demand for inclusive, adaptive, and context-aware interfaces continues to grow as computer becomes more integrated into our daily life. Thus, HCI research plays a foundational role in guiding the development of technologies that integrate usability, accessibility, and emotional engagement across modalities [3]. Against this backdrop, this study undertakes a comparative analysis of Graphical and Voice User Interfaces using standardized evaluation metrics such as usability, accessibility, and user experience (UX) to identify each interface's strengths, weaknesses, and to offer potential insight into how hybrid models could bridge gaps between traditional and emerging interaction paradigms.

II. LITERATURE REVIEW

As an interdisciplinary field, HCI combines cognitive psychology, design, and computer science to improve how users interact with technology [14]. According to Chromik & Butz [2] and Singh [3], HCI has evolved from command-line and graphical interfaces to include intelligent, multimodal systems that integrate speech, gesture, and contextual awareness.

Contemporary HCI research emphasizes human-centered design principles that take into consideration the emotional, cognitive, and physical factors in interaction [10]. Adaptive interfaces that can respond to a variety of user needs, like accessibility support and cognitive load reduction, are becoming more and more important as computing becomes more prevalence [6], [15]. This expansion emphasizes that, in addition to efficiency,

HCI also concerns itself about inclusivity, user trust, and interpretability. GUIs support a range of accessibility options, such as font resizing, contrast adjustment, and visual feedback systems, which enhance usability for users with varying needs [15]. Recent studies have refined GUI evaluation methods by focusing on cognitive load measurement and interface simplicity [10]. Wang et al [4] found that streamlined visual layouts significantly improve usability and user satisfaction when GUI-based software platforms were compared. Similarly, Rijo-García et al [16] emphasized the role of GUI in education and knowledge construction by linking interface design to computational thinking and learning outcomes.

Although, GUIs remain essential for visually dominant applications, limitations persist regarding dependence on manual and visual interaction modes. Research into complementary paradigms like voice and gesture-based interaction is motivated by limitations this creates for users with visual or motor impairments [13], [3]. The use of speech as the primary mode of communication in VUIs enables hands-free and natural interaction between users and systems. Also, the rise of smart assistants such as Google Assistant and Alexa demonstrates the scalability of VUIs in both personal and professional contexts [5]. Klein et al [7] highlighted that successful VUI design requires balancing conversational flow, error tolerance, and contextual awareness to ensure positive user experiences. Accessibility for visually impaired users has been significantly enhanced by the use of VUIs, most especially in scenarios where manual input is impractical [8]. However, there are challenges with respect to speech recognition accuracy, multilingual adaptability, and privacy concerns [9]. Klein et al [7] further observed that VUI effectiveness is highly context-dependent, influenced by environmental noise, task type, and user familiarity.

NUX IVE, a research tool for comparing GUIs and VUIs in virtual reality environments, was introduced by Buchta et al [12]. It shows that VUIs often foster more immersive and engaging experiences but may struggle with precision tasks. Additionally, by enabling adaptive feedback systems, Alnuaim et al [17] showed how emotion recognition in speech-based interfaces could improve user experience. Together, these studies collectively suggest that although VUIs have enormous potential for

accessibility, careful consideration of contextual and cognitive variability is necessary for their design.

According to studies such as Buchta et al [12] and Wang et al [4], VUIs promote inclusivity and hands-free convenience, while GUIs excel in precision and control. Through empirical testing, Jha et al [8] demonstrated that voice interfaces outperform graphical ones in accessibility metrics, particularly for users who are visually impaired. However, when performing complex, multitask operations, GUIs maintain greater consistency and reduced cognitive load [10].

Paneru et al [6] emphasized the growing interdependence between UI and UX, arguing that emotional satisfaction and task efficiency must be co-optimized rather than treated as competing objectives. Both Klein et al [7] and Blackwell [11] advocated for hybrid interaction models where GUIs provide structured control while VUIs enhance natural engagement. Such multimodal integrations are in line with current HCI trends that prioritize context awareness and adaptability over static interface dominance.

Table 1: Summary of Reviewed Literature on Graphical and Voice User Interfaces in HCI

Author(s)	Focus Area	Findings	Relevance to This Study
Dix et al [18], Preece et al [19]	Fundamentals of Human-Computer Interaction	Established theoretical foundations for usability, feedback, and human-centered design.	Provides baseline concepts and principles for evaluating interfaces.
Shneiderman et al [14], Nielsen [20]	Usability and Interface Design	Defined usability heuristics and ISO 9241-11 standards emphasizing efficiency and satisfaction.	Forms the core evaluation framework for GUI and VUI comparison.
Hassenzahl & Tractinsky [21], Darejeh et al [10]	User Experience & Cognitive Load	UX depends on both emotional satisfaction and mental effort; cognitive load affects usability.	Supports integration of cognitive and affective metrics in evaluation.
Wang et al [4]; Rijo-García et al [16]	GUI Usability and Learning Contexts	Simplified visual layouts improve efficiency and learning outcomes.	Reinforces GUI strengths in structured, precision-based environments.
Aladwan [13], Liu et al [15]	Accessibility in Graphical Systems	Visual feedback and adaptive tools enhance inclusivity for diverse users.	Highlights GUI accessibility mechanisms as comparison benchmarks.
Klein et al [7], Klein et al [22]	Design and Context of Voice Interfaces	VUI performance varies by context; design must balance error handling and user expectation.	Justifies context-based evaluation of VUI usability and UX.
Jha et al [8], Alnuaim et al [17]	Accessibility and Emotion in VUIs	Voice systems improve accessibility and engagement through emotional and conversational interaction.	Demonstrates VUI potential for inclusive and affective computing.
Buchta et al [12]	Comparative Tools for GUI–VUI Evaluation	Developed NUX IVE tool to test GUIs vs VUIs in VR settings.	Validates comparative methodology adopted in this study.
Paneru et al [6], Blackwell [11]	UI–UX Nexus and Multimodal Design	Advocated hybrid, multimodal interfaces combining voice and visuals.	Supports recommendation for multimodal HCI frameworks.
Chromik & Butz [2]; Singh [3]	Emerging Trends and Inclusive Design	Highlighted transparency, explainability, and accessibility in modern HCI.	Provides direction for future research on adaptive, user-centered interaction.

As shown in table 1, the comparative literature collectively affirms that both Graphical and Voice User Interfaces have unique advantages and limitations within HCI. While VUI research emphasizes accessibility and natural engagement, GUI research places more emphasis on structure, predictability, and visual clarity. This shows that no single interaction mode is always better, and that good interface design must take user diversity, contextual variability, and cognitive effort into account.

This study is anchored on established HCI evaluation models: Nielsen's [20] Usability Heuristics, ISO 9241-11 usability standard [14], and Norman's Model of Interaction [21]. These frameworks define usability as the effectiveness, efficiency, and satisfaction with which specific users achieve goals in given contexts. Darejeh et al [10] broaden this viewpoint even more by introducing cognitive load theory as a tool for measuring mental effort during interface use, thereby, emphasize the impact that design simplicity has on performance.

This framework guides the study's comparative evaluation of GUIs and VUIs across usability, accessibility, and UX dimensions. These frameworks emphasize human-centered design principles that optimize both cognitive and emotional user outcomes.

III. METHODOLOGY

A. Research Design

This study adopted a comparative research methodology to evaluate the usability, accessibility, and UX for two main interface paradigms: GUIs and VUIs. Comparative study is an appropriate approach for identifying relationships, similarities, and distinctions across interfaces without manipulating the experimental variables. The design focusses on systematically comparing each interaction mode using heuristic evaluation and performance-based evaluation to determine the relative strengths, weaknesses, and contextual suitability in different situations. This approach allows for analytical generalization rather than user-based sampling, focusing on interface characteristics, interaction principles, and user-centered design metrics derived from established HCI frameworks.

B. System Selection

To represent GUI and VUI systems, four widely used applications were specifically selected. Microsoft Word and WhatsApp were selected for the GUI group due to their well-established interfaces, widespread use, and variety of interaction scenarios. Google Assistant and Duolingo were chosen for the VUI group due to their conversational design, AI-based adaptability, and reliance on voice input. In order to ensure a valid comparison between usability and UX metrics, the selection criteria concentrated on the popularity, accessibility features, and representativeness of each interaction paradigm

The mixed choice of selection reflects real-world applications of both traditional graphical systems and the emerging intelligent voice interfaces. The study guaranteed comparability of task functionality and interaction complexity between the two interface groups by preserving equal representation

C. Evaluation Framework

The evaluation was guided by established usability and user experience frameworks in HCI specifically Nielsen's Usability Heuristics [20] and the ISO 9241-11 usability standard [14]. In line with Darejeh et al [10], cognitive load theory was also studied to understand mental effort during interaction. Three primary evaluation paradigms constituted the comparative analysis:

- 1) Usability: Measured in terms of effectiveness, efficiency, and error prevention.
- 2) Accessibility: Assessed through display of functions, support for different users, and integration of assistive features [8].
- 3) User Experience (UX): Evaluated based on satisfaction, engagement, and emotional appeal [21], Paneru et al [6].

The evaluation dimensions collectively ensured a holistic comparative framework that accounted for both functional and emotional user factors. Buchta et al [12] emphasized such integrated analysis in their development of NUX IVE, a tool for comparative GUI–VUI evaluation, which supports the methodological structure utilized in this study.

D. Data Sources

The study used observational and secondary data from published usability studies, official interface documentation, and direct exploratory use of each application. There were no direct human participants. To guarantee consistent contextual performance, observations were carried out under similar task conditions: document editing, messaging, query response, and interactive learning. To direct the observational analysis, a structured heuristic checklist was created based on earlier studies. This method aligns with that of Jha et al [8], who evaluated accessibility improvements in voice-based systems using controlled task comparisons.

E. Evaluation Procedure

Each interface was evaluated using a five-point heuristic rating scale (1 = Very Poor, 5 = Excellent). For each criterion under usability, accessibility, and UX, the systems were independently rated, and an average performance index was computed for each interface type.

The analysis employed descriptive comparison and ratio-based evaluation to establish performance patterns and contextual strengths. The final comparative score was computed using the weighted mean formula:

$$\text{Performance Index} = \frac{\sum(S_i)}{N}$$

where S_i represents each interface's total score and N the number of evaluation criteria.

This process enabled objective comparison and inferential interpretation without direct user testing, consistent with similar non-intrusive evaluation frameworks used by Wang et al [4] and Darejeh et al [10].

Table 2: Comparative Mean Performance of GUI and VUI Systems

Interface Type	Usability	Accessibility	UX	Mean Score
Graphical (Word, WhatsApp)	4.6	4.4	4.0	4.33
Voice (Google Assistant, Duolingo)	3.8	3.6	4.2	3.87

These suggest that there are comparable performance differences between visual and voice-based interfaces, thereby, implying that GUIs maintain superior operational consistency, while

F. Reliability and Validity

By consistently applying standardized heuristics and cross-referencing the findings with earlier usability studies, reliability was ensured. Consistent scoring methods and similar task contexts were used to preserve internal validity.

G. Ethical Considerations

The study neither involved human participants nor sensitive data. However, ethical standards in academic research such as integrity in data representation, respect for proprietary systems, and accurate citation were upheld. According to the principles of transparency and reproducibility, all analyses were carried out within the fair-use parameters of scientific and educational research procedures.

IV. RESULTS AND DISCUSSION

A. Comparative Performance Overview

The comparative evaluation examined four systems: Microsoft Word and WhatsApp for GUIs and Google Assistant and Duolingo for VUIs. Using a five-point heuristic scale derived from Nielsen's [20] and ISO 9241-11 [14] guidelines, each system was assessed across the three HCI dimensions of usability, accessibility, and UX.

The average performance indices as represented in table 2 reveal that GUI systems achieved higher mean scores in usability (4.6) and accessibility (4.4) compared with VUI systems (3.8 and 3.6, respectively). However, VUIs performed comparatively better in perceived UX (4.2 vs. 4.0), indicating stronger engagement and enjoyment.

VUIs offer enhanced engagement in dynamic or mobile environments.

B. Usability Analysis

GUIs consistently performed better than VUIs in usability measures such as task efficiency, error recovery, and feedback visibility. Consistent visual cues and predictable menu hierarchies in Microsoft Word and WhatsApp facilitated user control and learnability. In contrast, as already observed in previous studies, VUIs occasionally misinterpreted voice commands or failed under contextual ambiguities.

These findings suggest system feedback and error prevention as determinants of usability. While GUI-based systems enhance task completion rates through consistent interface metaphors, usability in voice-based interaction depends heavily on context and speech accuracy.

C. Accessibility Evaluation

According to accessibility analysis, GUI systems were more user-friendly for a wider range of users because they offered more extensive assistive features, like zoom options, contrast adjustments, and alternative text. However, VUIs greatly increase accessibility for people with visual impairments by enabling hands-free interaction and lowering reliance on visual interfaces. Nevertheless, studies show that there are still issues with voice recognition in noisy environments and for users with speech impairments or non-standard accents.

These results are in agreement with previous studies which emphasized that environmental adaptability and adaptive feedback are just as important to accessibility as modality. Thus, the findings show that although VUIs increase inclusivity, GUIs continue to be more resilient in a variety of

operating environments, particularly those that call for visual confirmation.

D. User-Experience Comparison

There are significant differences between GUI and VUI systems as revealed by the UX evaluation. Because of their conversational interfaces and reduced interaction friction, VUIs received higher ratings for enjoyment and perceived naturalness. While Duolingo's gamified dialogue structure encouraged motivation and engagement, systems such as Google Assistant provided instant spoken feedback.

On the other hand, users associate professional control and confidence with the familiarity, accuracy, and dependability that GUI-based systems like Word and WhatsApp offer. This result confirms earlier claims that HCI design is dualistic, hence, striking a balance between functional control and emotional fulfillment. Furthermore, the results show that systems that incorporate both affective and functional design cues produce effective UX, suggesting that hybrid GUI-VUI designs can produce more complex experiences.

E. Integrated Comparative Discussion

The findings show that GUIs and VUIs trade off functionality and emotion. While voice interfaces improve contextual flexibility and emotional satisfaction, graphical interfaces provide higher functional performance through visual accuracy and structural consistency. The smaller UX gap highlights the increasing maturity of VUI systems, while the weighted mean difference (~0.46) favors the overall performance of GUIs.

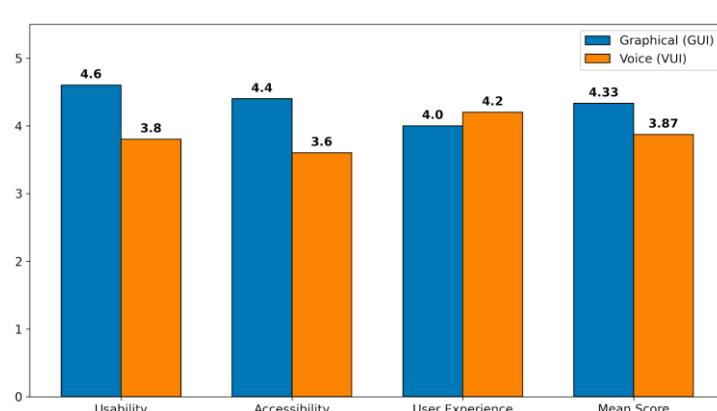


Figure 1: Performance Comparison of GUI and VUI Systems

These findings support the hybrid interaction viewpoint put forth by Klein et al [22] and Buchta et al [12], which contends that combining visual and auditory modalities results in more adaptable and inclusive designs. In a similar vein, Jha et al [8] also argued that combining graphical and voice cues enhanced accessibility results for all user groups. The findings also support ISO 9241-11 guidelines, which emphasize that usability must be context-dependent rather than modality-exclusive.

Consequently, this comparative insight reveals that HCI design should integrate multimodal frameworks, which are interfaces that enable smooth transitions between voice and graphical controls according to the user's needs, the task, and the environment. These hybrid designs are in line with HCI's future course, which emphasizes inclusivity, adaptability, and personalization as the primary factors that determine excellent design.

V. CONCLUSION

This study compared Graphical and Voice User Interfaces within the domain of HCI, focusing on usability, accessibility, and UX. The findings show that both paradigms contribute uniquely to the evolution of interactive design and user engagement. It was observed that GUIs outperform VUIs in usability and accessibility, benefiting from mature visual structures and consistent feedback. In contrast, VUIs provide stronger user experience, offering natural and engaging interaction through conversational dialogue. The findings show a context-dependent balance rather than a universally superior interface: VUIs enhance intuitiveness and emotional involvement, while GUIs excel in precision and control.

Consequently, the future of HCI lies in hybridized or multimodal integration of these modalities. Such design should harmonize visual, auditory, and contextual cues so as to create flexible systems that adapt to users' environments, abilities, and task demands hence, fostering inclusivity. This is the next frontier of intelligent human-machine collaboration.

From this study, three pressing priorities for advancing HCI were pointed out. First, although contemporary systems increasingly support hybridization or multimodal integration of both

graphical and voice-based interaction, such integration remains largely superficial, with voice interfaces often functioning as supplementary features rather than as fully integrated interaction modalities. Therefore, greater emphasis should be placed on the development of context-aware multimodal interfaces that enable seamless and adaptive switching between graphical and voice interactions based on task demands, environmental conditions, and user capabilities. Second, as existing systems still struggle with accents, speech impediments, and noisy environments, it is essential to improve accessibility in VUIs. Voice interaction would be more inclusive if recognition accuracy was improved and supportive feedback was given. Lastly, continuous usability testing is essential, particularly for VUIs that quickly evolves with advances in AI. As technology and user expectations evolve, regular evaluation guarantees that interfaces continue to be efficient, pertinent, and user-centred.

For technology to remain user-friendly, accessible, and human-centered, effective HCI design must balance auditory naturalness, visual accuracy, and contextual awareness. Maintaining adaptive, inclusive, and emotionally impactful user experiences for everyone should be the aim of HCI as computing environments grow more sophisticated and pervasive.

REFERENCES

- [1] T. Kosch, J. Karolus, J. Zagermann, H. Reiterer, A. Schmidt, and P. W. Woźniak, "A survey on measuring cognitive workload in human-computer interaction," *ACM Computing Surveys*, vol. 55, no. 13, pp. 1-39, 2023.
- [2] M. Chromik and A. Butz, "Human-XAI interaction: A review and design principles for explanation user interfaces," in *Proc. IFIP Conf. Human-Computer Interaction*, Cham, Switzerland: Springer, 2021, pp. 619-640.
- [3] A. Singh, "Human-computer interaction: A review of usability, design, and accessibility trends," *Global Research Repo*, vol. 1, no. 2, pp. 362-387, 2025.
- [4] J. Wang, Z. Xu, X. Wang, and J. Lu, "A comparative research on usability and user experience of user interface design software," *International Journal of Advanced Computer*

Science and Applications, vol. 13, no. 8, pp. 1-10, 2022.

[5] F. Milani, J. Zhang, and K. Hu, "The rise of conversational interfaces: Usability and adoption challenges," *Computers in Human Behavior*, vol. 137, Art. no. 107421, 2022.

[6] B. Paneru, B. Paneru, R. Poudyal, and K. B. Shah, "Exploring the nexus of user interface and user experience in the context of emerging trends and artificial intelligence," *International Journal of Informatics, Information System and Computer Engineering*, vol. 5, no. 1, pp. 102-113, 2024.

[7] A. M. Klein, K. Kölln, J. Deutschländer, and M. Rauschenberger, "Design and evaluation of voice user interfaces: What should one consider?" in *Proc. Int. Conf. Human-Computer Interaction*, Cham, Switzerland: Springer, 2023, pp. 167-190.

[8] R. Jha, M. F. H. Fahim, M. A. M. Hassan, C. Rai, M. M. Islam, and R. K. Sah, "Analyzing the effectiveness of voice-based user interfaces in enhancing accessibility in human-computer interaction," in *Proc. IEEE 13th Int. Conf. Communication Systems and Network Technologies (CSNT)*, Apr. 2024, pp. 777-781.

[9] S. Ranade, A. Soni, and R. Patel, "Error resilience and contextual adaptation in speech-based systems," *Journal of Human-Technology Studies*, vol. 19, no. 2, pp. 89–02, 2024.

[10] A. Darejeh, N. Marcusa, G. Mohammadi, and J. Sweller, "A critical analysis of cognitive load measurement methods for evaluating the usability of different types of interfaces: Guidelines and framework for human-computer interaction," *arXiv:2402.11820*, 2024.

[11] A. Blackwell, "Comparative interaction paradigms: Evaluating multimodal affordances in modern HCI," *Human-Computer Studies Review*, vol. 52, no. 1, pp. 44-59, 2024.

[12] K. Buchta, P. Wójcik, M. Pelc, A. Górowska, D. Mota, K. Boichenko, and M. Igras-Cybulska, "NUX IVE: A research tool for comparing voice user interface and graphical user interface in VR," in *Proc. IEEE Conf. Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)*, Mar. 2022, pp. 982-983.

[13] M. Aladwan, "Exploring accessibility challenges in digital interfaces: A usability perspective," *Journal of Interactive Systems Research*, vol. 8, no. 2, pp. 65-78, 2021.

[14] B. Shneiderman, C. Plaisant, M. Cohen, S. Jacobs, N. Elmquist, and N. Diakopoulos, *Designing the User Interface: Strategies for Effective Human-Computer Interaction*, 6th ed. Boston, MA, USA: Pearson, 2016.

[15] Y. Liu, C. B. Sivaparthipan, and A. Shankar, "Human-computer interaction based visual feedback system for augmentative and alternative communication," *International Journal of Speech Technology*, vol. 25, no. 2, pp. 305-314, 2022.

[16] S. Rijo-García, E. Segredo, and C. León, "Computational thinking and user interfaces: A systematic review," *IEEE Transactions on Education*, vol. 65, no. 4, pp. 647-656, 2022.

[17] A. A. Alnuaim, M. Zakariah, P. K. Shukla, A. Alhadlaq, W. A. Hatamleh, H. Tarazi, and R. Ratna, "Human-computer interaction for recognizing speech emotions using multilayer perceptron classifier," *Journal of Healthcare Engineering*, vol. 2022, Art. no. 6005446, 2022.

[18] A. Dix, J. Finlay, G. D. Abowd, and R. Beale, *Human-Computer Interaction*, 3rd ed. Harlow, U.K.: Pearson Education, 2004.

[19] J. Preece, Y. Rogers, and H. Sharp, *Interaction Design: Beyond Human-Computer Interaction*, 4th ed. Hoboken, NJ, USA: Wiley, 2015.

[20] J. Nielsen, *Usability Engineering*. San Francisco, CA, USA: Morgan Kaufmann, 2012.

[21] M. Hassenzahl and N. Tractinsky, "User experience: A research agenda," *Behaviour & Information Technology*, vol. 25, no. 2, pp. 91-97, 2006.

[22] A. M. Klein, J. Deutschländer, K. Kölln, M. Rauschenberger, and M. J. Escalona, "Exploring the context of use for voice user interfaces: Toward context-dependent user experience quality testing," *Journal of Software: Evolution and Process*, vol. 36, no. 7, Art. no. e2618, 2024.