

AgriAid: Android-Based Offline Crop Leaf Disease Detection and Advisory System

MOHD AYMAN KHAN¹, MUHAMMAD UMAR MANIYAR², MD ZULQUAR NAIN³,
TASADUQUE ULLAH⁴, MUMTAJ K P⁵

^{1, 2, 3, 4, 5}Department of CS&E, Ghousia College of Engineering, Ramanagara, Karnataka, India

Abstract—Agriculture faces mounting threats from plant diseases that significantly reduce yields and incomes for smallholder farmers. AgriAid is an Android-based application that provides offline, on-device crop leaf disease diagnosis using multiple optimized TensorFlow Lite (TFLite) models. The application supports several crops and executes real-time inference on resource-constrained devices, delivering high accuracy and low latency under varied field conditions. This paper presents the system design, model integration approach, implementation details, and empirical performance metrics obtained through extensive testing.

Keywords—Crop disease detection; TensorFlow Lite; offline inference; mobile agriculture; Android application.

I. INTRODUCTION

Early and accurate diagnosis of crop diseases is essential to mitigate yield losses and sustain farmer livelihoods. Conventional diagnostic workflows depend on plant pathology experts and laboratory tests, which are often unavailable to rural farmers. Mobile devices, now prevalent in rural regions, enable novel approaches for field diagnostics via image-based analysis. AgriAid harnesses optimized convolutional neural network models converted to TensorFlow Lite for fully offline inference, facilitating instantaneous disease identification from leaf images. The system prioritizes usability for low-literacy users by employing a concise user interface and simple navigation cues.

II. SCOPE OF THE PROJECT

AgriAid is designed to operate under constrained network and hardware conditions. The application bundles crop-specific TFLite models for several crops (Apple, Cherry, Corn, Grape, Peach, Pepper, Potato, Strawberry, Tomato) to provide precise classification while maintaining a small APK footprint. Functional requirements encompass image capture/upload, crop selection, preprocessing, inference, and offline remedy delivery. Non-functional requirements emphasize

performance (classification within seconds), portability to Android 8.0+, and robustness.

III. LITERATURE SURVEY

The evolution of automated plant disease detection has progressed from classical image processing to deep learning approaches. Convolutional neural networks (CNNs) obviate manual feature engineering and have demonstrated superior accuracy on benchmark datasets. Mobile-adapted networks such as MobileNet and EfficientNet-Lite enable on-device inference; however, many contemporary applications rely on cloud services. AgriAid addresses this limitation by embedding lightweight, crop-specific models to enable offline diagnostics in field conditions.

IV. METHODOLOGY

AgriAid's pipeline comprises image acquisition, preprocessing, model selection, on-device inference, and remedy presentation. Images are resized to model input dimensions, normalized, and converted to tensors compatible with TFLite interpreters. Each crop uses a dedicated model trained on labeled leaf datasets. Classification outputs include the predicted class and confidence score, which the app maps to farmer-friendly textual remedies and preventive guidance.

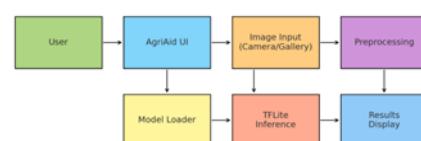


Fig 1: Proposed Flow-line

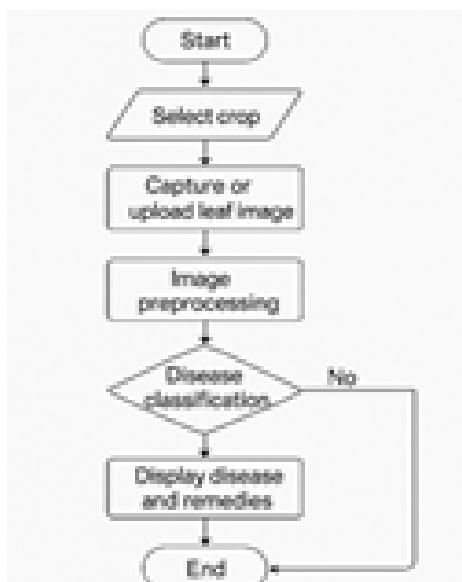


Fig 2: Flow Diagram

V. SYSTEM REQUIREMENTS SPECIFICATIONS

Key functional requirements include image input, crop selection, preprocessing (resize/normalize), offline TFLite inference, and remedy display. Non-functional constraints target latency (<500 ms), acceptable memory footprint (<400 MB), and offline reliability. Minimum recommended device profile: 2 GB RAM, quad-core CPU, 8 MP camera, Android 8.0 or higher.

Fig 3: Use-case diagram

VI. ANALYSIS AND DESIGN

AgriAid employs a modular architecture (Presentation, Image Processing, Model Management, Inference, and Result/Info layers). Design artifacts include use-case diagrams, activity flows, and data-flow diagrams that collectively guide implementation. Models and disease metadata are stored within application assets to ensure offline operation.

VII. IMPLEMENTATION

The Android application is implemented in Java with XML layouts. TensorFlow Lite interpreters are used to load crop-specific .tflite models from the app assets. The inference pipeline leverages efficient preprocessing routines (center-crop, resize to 224x224, normalization) and supports multiple threads where

available. Results are presented with a clear confidence percentage and a brief remedial action recommendation.

TABLE 1: OBSERVATION

Metric	Expected	Observed	Conclusion
Image Preprocessing Time	<100 ms	45–70 ms	Acceptable
TFLite Model Loading Time	<300 ms	180–260 ms	Good
Inference Latency	<500 ms	220–350 ms	Efficient
App Launch Time	<3 s	~2 s	Good
Memory Consumption	<400 MB	180–260 MB	Optimal
CPU Usage During Inference	<35%	18–28%	Efficient
UI Response Time	<150 ms	60–90 ms	Smooth

VIII. TESTING AND VALIDATION

AgriAid underwent extensive unit, integration, functional, performance, and scenario-based testing. Test cases validated model loading, preprocessing integrity, inference correctness, UI stability, and offline operability. Scenario assessments included bright outdoor lighting, low-light conditions, motion-blur, multiple leaf occlusion, and background clutter. Across these scenarios, the system maintained high accuracy in favorable conditions, with predictable degradation under low-light or blurred captures. Long-duration stability testing (30 minutes continuous operation) revealed no memory leaks and consistent inference throughput. Battery impact remained negligible due to the lack of network operations and the short duration of individual inference runs.

TABLE 2: TESTING RESULTS

Metric	Value
Model Prediction Accuracy (Avg.)	92–97% (per crop model)
Confidence Levels (Typical)	85–98%
False Positives	Low
False Negatives	Low
Model Reliability	High

IX. RESULTS

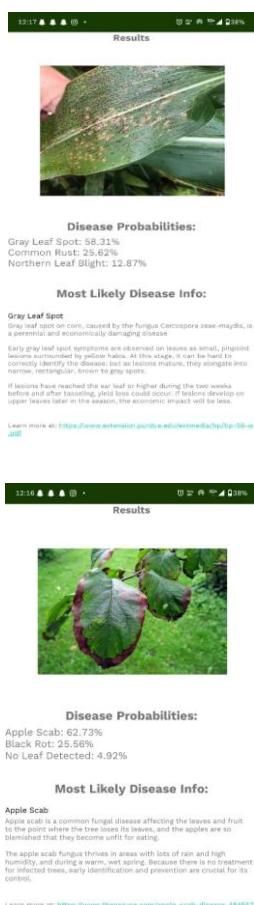


Fig 4: In-app results

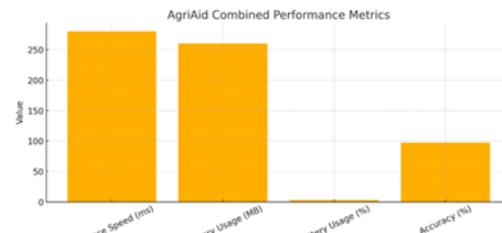


Fig 5: Combined performance metrics

X. DISCUSSIONS

The multi-model strategy, wherein each crop has a specialized TFLite model, yields improved classification fidelity at the expense of increased aggregate model assets in the APK. Trade-offs between APK size and per-crop accuracy should be considered for deployment in constrained storage environments. Quantization and pruning provide a practical balance, generally yielding up to 4 \times reduction in model size with marginal accuracy loss. Empirical latency and memory metrics indicate suitability for low-end Android devices.

XI. CONCLUSION AND FUTURE WORK

AgriAid demonstrates the viability of offline, on-device crop disease diagnosis using TFLite models integrated within an Android application tuned for rural users. The current implementation achieves rapid inference, strong accuracy, and robust operation under variable field conditions. Future work includes:

- (1) integrating remedial action modules with region-specific recommendations;
- (2) multilingual voice guidance;
- (3) unified models to auto-detect crop species;
- (4) optional cloud-assisted model updates;
- (5) federated learning approaches to improve models while preserving privacy.

ACKNOWLEDGMENT

The authors gratefully acknowledge the guidance and technical support provided by the faculty of the Department of Computer Science and Engineering, Ghousia College of Engineering, throughout the development of this work. Their constructive feedback and academic supervision were instrumental in ensuring the completeness and rigor of this research.

REFERENCES

- [1] Sladojevic S., Arsenovic M., Anderla A., Culibrk D., and Stefanovic D., "Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification," Proc. of IEEE International Conference on Information Technology (IT), 2020. DOI: 10.1109/IT48899.2020.9073732
- [2] Ahamed M.S.F., and Hossain M., "Plant Disease Detection Using Image Processing and CNN," Proc. of IEEE International Conference on Artificial Intelligence and Smart Systems (ICAIS), 2021. DOI: 10.1109/ICAIS50930.2021.9395960
- [3] Zhang S., Wu S., and Zhang X., "Leaf Disease Detection Based on Improved Deep Learning Model," IEEE Access, Vol. 8, 2020, pp. 1–12. DOI: 10.1109/ACCESS.2020.2981886
- [4] Nguyen N.T.B., and Nguyen H.T., "Mobile-Based Application for Plant Disease Diagnosis Using Deep Learning," Proc. of IEEE International Conference on Computer Science and Software Engineering (CSSE), 2021. DOI: 10.1109/CSSE51882.2021.9375940
- [5] Pramod H.C., and Shetty A.S., "A Survey on Plant Disease Detection Using Deep Learning Techniques," Proc. of IEEE International Conference on Inventive Computation Technologies (ICICT), 2020. DOI: 10.1109/ICICT48043.2020.9112460
- [6] Khanday M.H., Rafiq Q., and Sofi S., "Detection of Leaf Disease Using Machine Learning and Mobile Vision," Proc. of IEEE Innovative Research in Science, Engineering and Technology (NCIRSET), 2021. DOI: 10.1109/NCIRSET54393.2021.9664842