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Abstract—Agriculture faces mounting threats from plant
diseases that significantly reduce yields and incomes for
smallholder farmers. Agridid is an Android-based
application that provides offline, on-device crop leaf disease
diagnosis using multiple optimized TensorFlow Lite
(TFLite) models. The application supports several crops
and executes real-time inference on resource-constrained
devices, delivering high accuracy and low latency under
varied field conditions. This paper presents the system
design, model integration approach, implementation
details, and empirical performance metrics obtained
through extensive testing.
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I. INTRODUCTION

Early and accurate diagnosis of crop diseases is
essential to mitigate yield losses and sustain farmer
livelihoods. Conventional diagnostic ~workflows
depend on plant pathology experts and laboratory tests,
which are often unavailable to rural farmers. Mobile
devices, now prevalent in rural regions, enable novel
approaches for field diagnostics via image-based
analysis. AgriAid harnesses optimized convolutional
neural network models converted to TensorFlow Lite
for fully offline inference, facilitating instantaneous
disease identification from leaf images. The system
prioritizes usability for
employing a concise user interface and simple

low-literacy users by
navigation cues.
II. SCOPE OF THE PROJECT

AgriAid is designed to operate under constrained
network and hardware conditions. The application
bundles crop-specific TFLite models for several crops
(Apple, Cherry, Corn, Grape, Peach, Pepper, Potato,
Strawberry, Tomato) to provide precise classification
while maintaining a small APK footprint. Functional
requirements encompass image capture/upload, crop
selection, preprocessing, inference, and offline remedy
delivery. Non-functional requirements emphasize
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performance  (classification  within
portability to Android 8.0+, and robustness.

seconds),

III. LITERATURE SURVEY

The evolution of automated plant disease detection has
progressed from classical image processing to deep
learning approaches. Convolutional neural networks
(CNNs) obviate manual feature engineering and have
demonstrated superior accuracy on benchmark
datasets. Mobile-adapted networks such as MobileNet
and EfficientNet-Lite enable on-device inference;
however, many contemporary applications rely on
cloud services. AgriAid addresses this limitation by
embedding lightweight, crop-specific models to enable
offline diagnostics in field conditions.

IV. METHODOLOGY

AgriAid's pipeline comprises image acquisition,
preprocessing, model selection, on-device inference,
and remedy presentation. Images are resized to model
input dimensions, normalized, and converted to tensors
compatible with TFLite interpreters. Each crop uses a
dedicated model trained on labeled leaf datasets.
Classification outputs include the predicted class and
confidence score, which the app maps to farmer-
friendly textual remedies and preventive guidance.

Fig 1: Proposed Flow-line
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Fig 2: Flow Diagram
V. SYSTEM REQUIREMENTS SPECIFICATIONS

Key functional requirements include image input, crop
selection, preprocessing (resize/normalize), offline
TFLite inference, and remedy display. Non-functional
constraints target latency (<500 ms), acceptable
memory footprint (<400 MB), and offline reliability.
Minimum recommended device profile: 2 GB RAM,
quad-core CPU, 8 MP camera, Android 8.0 or higher.

Fig 3: Use-case diagram

VI. ANALYSIS AND DESIGN

AgriAid employs a modular architecture (Presentation,
Image Processing, Model Management, Inference, and
Result/Info layers). Design artifacts include use-case
diagrams, activity flows, and data-flow diagrams that
collectively guide implementation. Models and disease
metadata are stored within application assets to ensure
offline operation.

VIIL. IMPLEMENTATION

The Android application is implemented in Java with
XML layouts. TensorFlow Lite interpreters are used to
load crop-specific .tflite models from the app assets.
The inference pipeline leverages  efficient
preprocessing routines (center-crop, resize to 224x224,
normalization) and supports multiple threads where
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available. Results are presented with a clear confidence

percentage and a  brief remedial action
recommendation.
TABLE 1: OBSERVATION
Metric Expected | Observed | Conclusion
Image 45-70
Preprocessing | <100 ms ms Acceptable
Time
TFLite Model
. 180-260
Loading <300 ms ms Good
Time
Infe 220~
Perence <500ms | 222 | Efficient
Latency ms
A L h
.pp e ~2s Good
Time
Memory <400 180-260 .
Optimal
Consumption | MB MB ptima
CPU Usage
During <35% 18-28% | Efficient
Inference
U'I Response <150 ms 60-90 Smooth
Time ms
VIII. TESTING AND VALIDATION
AgriAid underwent extensive unit, integration,

functional, performance, and scenario-based testing.
Test cases validated model loading, preprocessing
integrity, inference correctness, UI stability, and
offline operability. Scenario assessments included
bright outdoor lighting, low-light conditions, motion-
blur, multiple leaf occlusion, and background clutter.
Across these scenarios, the system maintained high
accuracy in favorable conditions, with predictable
degradation under low-light or blurred captures. Long-
duration stability testing (30 minutes continuous
operation) revealed no memory leaks and consistent
inference throughput. Battery impact remained
negligible due to the lack of network operations and the
short duration of individual inference runs.
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TABLE 2: TESTING RESULTS

Metric Value
Model Prediction | 92-97% (per crop
Accuracy (Avg.) model)
Confidence Levels
_0R0

(Typical) 85-98%
False Positives Low
False Negatives Low
Model Reliability High

IX. RESULTS

Most Likely Disease Info:

Disease Probabilities:

Most Likely Disease Info:

Apple Scab

Fig 4: In-app results
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Agrifid Combined Performance Metrics

Fig 5: Combined performance metrics
X. DISCUSSIONS

The multi-model strategy, wherein each crop has a
specialized TFLite model, yields improved
classification fidelity at the expense of increased
aggregate model assets in the APK. Trade-offs between
APK size and per-crop accuracy should be considered
for deployment in constrained storage environments.
Quantization and pruning provide a practical balance,
generally yielding up to 4% reduction in model size
with marginal accuracy loss. Empirical latency and
memory metrics indicate suitability for low-end
Android devices.

XI. CONCLUSION AND FUTURE WORK

AgriAid demonstrates the viability of offline, on-

device crop disease diagnosis using TFLite models

integrated within an Android application tuned for

rural users. The current implementation achieves rapid

inference, strong accuracy, and robust operation under

variable field conditions. Future work includes:

(1) integrating remedial action modules with region-
specific recommendations;

(2) multilingual voice guidance;

(3) unified models to auto-detect crop species;

(4) optional cloud-assisted model updates;

(5) federated learning approaches to improve models
while preserving privacy.
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