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Abstract- Effective remediation of contaminated sites
increasingly depends on advanced predictive capabilities
that can accurately characterize and forecast subsurface
contamination pathways. Traditional site assessment
methods often struggle to capture the spatial heterogeneity,
nonlinear contaminant transport dynamics, and multi-
source pollution interactions typical of complex
remediation projects. This study proposes a comprehensive
data-driven framework that integrates geospatial analytics,
machine learning models, and hydrogeological simulation
to enhance the prediction of contaminant migration in
heterogeneous subsurface environments. The framework
leverages  high-resolution datasets including soil
properties, hydrological gradients, geochemical indicators,
and historical contaminant concentrations to identify key
transport  mechanisms and  generate  predictive
contamination plume trajectories. By combining
supervised learning algorithms with physics-informed
constraints, the model captures both the statistical patterns
and mechanistic behaviors governing subsurface pollutant
movement. In addition, the framework incorporates
uncertainty  quantification techniques to evaluate
prediction confidence and guide decision-making under
data limitations. Case applications demonstrate that the
data-driven approach outperforms traditional
deterministic models in forecasting plume evolution,
delineating risk zones, and identifying potential receptor
exposure pathways. Results further show that integrating
multi-source datasets significantly improves model
robustness, offering actionable insights for remediation
design, resource allocation, and long-term monitoring
strategies. The study contributes a scalable methodology
capable  of  supporting  remediation  engineers,
environmental regulators, and policymakers in optimizing
site-specific and regional contamination management. By
bridging advanced analytics with domain knowledge, the

proposed  framework supports early detection of

contamination hotspots, enhances risk assessment, and
promotes cost-effective remediation planning. Ultimately,
this data-driven predictive architecture represents a
transformative  tool  for managing  subsurface
contamination under increasing environmental and
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regulatory pressures, enabling more precise, transparent,
and adaptive remediation interventions. Future work will
explore  real-time  data  integration,  improved
interpretability of machine learning models, and
incorporation of emerging sensing technologies to further
strengthen predictive accuracy and support sustainable
environmental restoration.
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L INTRODUCTION

Subsurface contamination remains one of the most
complex and persistent challenges in environmental
remediation, largely due to the heterogeneous nature
of soil structures, variable hydrogeological conditions,
and the dynamic behaviour of contaminant migration.
Pollutants originating from industrial spills, leaking
storage systems, agricultural runoff, and legacy waste
sites often move unpredictably through porous media,
creating hidden pathways that threaten groundwater
resources, ecological stability, and human health.
Traditional  predictive  approaches  primarily
deterministic models and manually interpreted
hydrogeological assessments frequently struggle to
capture these complexities because they rely on
limited datasets, oversimplified transport assumptions,
and static boundary conditions that fail to reflect real-
world variability (Alibakhshi, et al., 2017, Zhang, et
akl., 2013). As remediation projects become more
intricate, involving multiple contaminant sources,
fluctuating hydraulic gradients, and evolving land-use
patterns, the shortcomings of conventional tools
become increasingly evident. Their inability to
integrate high-resolution spatial data, incorporate

ICONIC RESEARCH AND ENGINEERING JOURNALS 312



© NOV 2018 | IRE Journals | Volume 2 Issue 5 | ISSN: 2456-8880

temporal changes, or adapt to emerging field
information often results in inaccurate plume
forecasting, inefficient remediation planning, and
elevated project costs (Faseemo, et al., 2009).

The growing availability of  multi-source
environmental datasets, advancements in sensing
technologies, and the rise of scalable analytical
methods now provide an opportunity to transform
subsurface contamination prediction. Data-driven
techniques particularly those leveraging machine
learning,  geospatial  analytics, and  hybrid
computational models offer the capacity to process
complex datasets, identify hidden relationships, and
generate more realistic representations of transport
mechanisms across diverse soils and aquifers. By
integrating physics-informed constraints with data
analytics, these approaches address the limitations of
purely empirical or purely mechanistic models,
enabling more precise delineation of contaminant
pathways and more reliable forecasting of plume
evolution. The adoption of data-driven frameworks
also enhances decision-making by providing
probabilistic insights, quantifying uncertainty, and
improving the interpretability of subsurface dynamics.
In complex remediation environments where
uncertainty is high and stakes are significant, such
frameworks represent a critical advancement
(Manfreda, et al., 2018, Sims & Colloff, 2012). They
allow practitioners to optimize resource allocation,
accelerate risk assessments, and design interventions
that are both targeted and adaptive. In this context, a
data-driven framework becomes essential for
managing subsurface contamination with greater
accuracy, transparency, and operational efficiency.

2.1. Methodology

This study adopts a data-driven, hybrid analytical
methodology to predict subsurface contamination
pathways in complex remediation projects by
integrating  heterogeneous environmental data
streams, advanced machine learning techniques, and
spatial-hydrogeological reasoning. The
methodological design is informed by data-centric
predictive frameworks applied in environmental
monitoring, groundwater contamination mapping, and
decision-support systems, emphasizing scalability,
uncertainty handling, and real-time adaptability. The
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approach combines IloT-enabled sensing, remote
sensing observations, historical site investigation
records, and hydrogeophysical datasets to construct a
unified analytical environment capable of learning
complex subsurface behavior beyond the limitations
of purely deterministic models.

Primary data sources include in-situ sensor networks
measuring groundwater quality parameters, soil
moisture, hydraulic head, redox potential, and
contaminant concentrations, alongside remote sensing
products capturing land cover dynamics, surface
moisture anomalies, vegetation stress, and terrain
attributes. Historical borehole logs, geotechnical
profiles, laboratory contaminant analyses, remediation
records, and hydrogeological conceptual site models
are incorporated to provide contextual grounding.
These datasets are ingested through an automated data
acquisition pipeline that standardizes formats,
timestamps observations, and performs quality control
procedures such as noise filtering, missing-value
imputation, and outlier detection to ensure analytical
robustness.

Feature engineering is conducted to translate raw
observations into physically and statistically
meaningful predictors of contaminant migration.
Derived variables include hydraulic gradients,
permeability proxies, lithological continuity indices,
contaminant mass flux estimates, and spatio-temporal
change metrics extracted from time-series remote
sensing imagery. Dimensionality reduction techniques
are applied where necessary to manage data
redundancy while preserving dominant variance
structures relevant to subsurface transport processes.
The engineered feature set reflects both intrinsic site
vulnerability and dynamic forcing factors such as
land-use change, climatic variability, and remediation
interventions.

Predictive modeling is implemented using an
ensemble machine learning strategy that integrates
multiple algorithms, including random forest, gradient
boosting, and support vector regression, to capture
nonlinear interactions between hydrogeological
controls and contaminant behavior. Model training is
performed using stratified spatial-temporal sampling
to avoid bias and overfitting, with cross-validation
employed to evaluate generalization performance.
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Ensemble averaging and weighted voting schemes are
applied to improve prediction stability and reduce
algorithm-specific uncertainty. The models are
calibrated to predict contaminant concentration
gradients, plume evolution trajectories, and
preferential migration pathways across multiple
subsurface layers.

Spatial integration is achieved through coupling the
trained predictive models with a GIS-based analytical
environment. Model outputs are translated into
probabilistic contamination pathway maps that
visualize likely plume directions, depth-dependent
risk zones, and areas of potential exposure. These
outputs are dynamically updated as new sensor data
become  available, enabling  near—real-time
reassessment of subsurface risk conditions. The
framework supports scenario-based analysis by
simulating changes in contaminant behavior under
alternative remediation strategies, hydrogeological
assumptions, or environmental stressors.

Uncertainty quantification is embedded throughout the
analytical workflow using ensemble dispersion
metrics, sensitivity analysis, and probabilistic output
interpretation. This allows decision-makers to
distinguish high-confidence predictions from areas
requiring additional investigation or monitoring. The
final stage of the methodology integrates predictive
outputs into a decision-support interface that
communicates actionable insights to remediation
planners, regulators, and site managers. This interface
supports adaptive remediation planning by linking
predicted contamination pathways with remediation
effectiveness indicators, monitoring priorities, and
long-term risk management strategies.
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Figure 1: Flowchart of the study methodology

2.2. Problem Context and Environmental
Significance

Subsurface contamination represents a persistent
environmental challenge that continues to undermine
the safety, stability, and sustainability of natural and
built ecosystems. The sources of such contamination
are diverse and often deeply embedded in industrial,
agricultural, and wurban activities. Leaking
underground storage tanks, refinery operations,
pipeline failures, mining residues, landfills, chemical
spills, and improper waste disposal practices remain
among the most common contributors of hazardous
substances into soil and groundwater systems.
Agricultural fertilizers, pesticides, and livestock waste
also introduce nitrates, phosphates, and microbial
contaminants that can migrate far beyond their original
application zones. In older industrial regions, legacy
contamination from decades of unregulated disposal
practices continues to pose significant threats, often
compounded by incomplete historical records and
limited site characterization (Buma & Livneh, 2017,
Zhai, Yue & Zhang, 2016). These diverse sources

ICONIC RESEARCH AND ENGINEERING JOURNALS 314



© NOV 2018 | IRE Journals | Volume 2 Issue 5 | ISSN: 2456-8880

introduce contaminants with varying chemical
properties, persistence levels, and environmental
behaviours, making the identification and prediction
of their pathways extraordinarily complex.

Complicating the scenario further are the geological
and hydrogeological complexities inherent in
subsurface environments. Soil and rock layers exhibit
heterogeneity in texture, porosity, permeability, and
mineral composition, creating preferential flow
channels and unpredictable retention zones. Aquifer
systems are often dynamic, influenced by seasonal
recharge patterns, groundwater extraction, surface
infiltration, and climatic variations. Fractured bedrock
terrains, karst landscapes, and heterogeneous alluvial
deposits amplify the challenge, as contaminants may
bypass monitoring points, migrate through unexpected
conduits, or become trapped in low-permeability
zones before remobilizing under altered hydraulic
conditions. Even small spatial variations in soil
structure or saturation can significantly alter
contaminant transport rates and directions (Schultz &
Engman, 2012, Sorooshian, et al., 2014). Because
these subsurface conditions are rarely uniform or
static, deterministic models that rely on simplified
assumptions often fail to capture the nuanced
interactions driving contaminant migration.

The uncertainties associated with contaminant
transport are further exacerbated by the
physicochemical characteristics of the pollutants
themselves. Organic solvents such as chlorinated
hydrocarbons can form dense non-aqueous phase
liquids (DNAPLSs) that sink deeply into aquifers, while
light non-aqueous phase liquids (LNAPLs) float and
spread along the water table. Metals may adsorb to soil
particles and later desorb under changes in pH or redox
conditions, leading to delayed or secondary
contamination plumes. Reactive species may degrade
into equally or more harmful by-products,
complicating predictions even further. Microbial
activity, temperature variations, groundwater velocity
changes, and chemical interactions between multiple
contaminants add additional layers of uncertainty
(Thakur, Singh & Ekanthalu, 2017). As a result,
traditional prediction tools often underestimate the
spatial extent of contamination, misidentify the
direction of plume travel, or overlook contaminant
persistence in subsurface reservoirs.
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These uncertainties have profound implications for
public health, as groundwater remains a primary
source of drinking water for millions of people
worldwide. Contaminants such as benzene,
trichloroethylene, arsenic, nitrates, and heavy metals
pose significant health risks, including carcinogenic
effects, neurological damage, reproductive issues, and
developmental problems in children. When
contaminants migrate undetected or unpredictably,
they can contaminate wells, irrigation systems, and
surface water bodies, exposing communities to long-
term health hazards. The latency period of many
contamination-related illnesses means harmful
exposures may go unnoticed for years, further
reinforcing the need for accurate, predictive
subsurface contamination models (Andres, et al.,
2018, Turczynowicz, Pisaniello & Williamson, 2012).
Poorly understood or misrepresented contamination
pathways can delay risk communication, hinder
effective public-health interventions, and erode
community trust in environmental management
institutions. Figure 2 shows DPSIR framework and
subsurface environmental problems presented by

Jago-on, et al., 2009.
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Figure 2: DPSIR framework and subsurface
environmental problems (Jago-on, et al., 2009).
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Regulatory frameworks governing contaminated sites
demand precise assessments and accurate predictions
of contamination pathways, making the limitations of
conventional approaches a major compliance concern.
Environmental Protection Agencies, water authorities,
and international regulatory organisations increasingly
require detailed hydrogeological characterisation,
plume delineation, and predictive modelling as part of
site  investigations and remediation planning.
Inaccurate predictions can result in non-compliance
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with cleanup standards, penalties, project delays, or
costly redesigns of remediation strategies.
Furthermore, underestimating the extent of
contamination may lead to insufficient remediation
measures, leaving hazardous substances in place that
continue to pose long-term risks (McAlary, Provoost
& Dawson, 2010, Provoost, et al., 2013). Conversely,
overestimating contamination zones may result in
unnecessary expenditures, reduced economic viability
of redevelopment projects, and inefficient allocation
of public or private resources. As environmental
regulations become more stringent and climate-related
impacts intensify hydrological uncertainties, the need
for robust predictive tools becomes even more urgent.

Remediation outcomes are directly tied to the accuracy
of subsurface contamination predictions. Successful
remediation requires precise identification of
contamination hotspots, accurate estimation of plume
boundaries, and reliable predictions of how
contaminants will move under both current and future
conditions. Traditional site investigation methods
boring logs, monitoring wells, pump tests, and
laboratory analyses provide valuable but often sparse
datasets that may inadequately represent the full
spatial complexity of the subsurface. As a result,
remediation strategies such as pump-and-treat
systems, bioremediation, soil vapour extraction, or
permeable reactive barriers may be poorly designed,
improperly positioned, or insufficiently scaled.
Remediation failures not only prolong contamination
but also increase operational costs, reduce stakeholder
confidence, and complicate long-term site
management (Roghani, 2018, Wang, Unger & Parker,
2014).

The integration of data-driven frameworks into
contamination pathway prediction directly responds to
these limitations by offering more advanced, adaptive,
and comprehensive analytical capabilities. Data-
driven approaches can fuse multiple datasets
geophysical surveys, remote sensing, sensor-based
monitoring, historical records, geochemical profiles,
and hydraulic measurements to create a more holistic
understanding of subsurface conditions. Machine
learning algorithms can reveal hidden patterns in
contaminant behaviour, identify key transport drivers,
and detect anomalies that traditional models might
miss (Derycke, et al., 2018, Kulawiak & Lubniewski,
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2014). Geospatial analytics enable high-resolution
mapping and probabilistic plume delineation,
improving both the precision and reliability of
predictions. By incorporating temporal datasets, data-
driven models can also simulate contaminant
migration under varying conditions, capturing the
dynamic nature of subsurface environments. Figure 3
shows Conceptual site model of Pb contamination in
Klity Creek showing Pb sources, five exposure
pathways (fish ingestion, drinking water, soil
ingestion and dermal contact, edible plant ingestion,
and inhalation), fate and transport mechanisms, and
human as well as ecological receptors presented by
Phenrat, et al., 2016.
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Figure 3: Conceptual site model of Pb contamination
in Klity Creek showing Pb sources, five exposure
pathways (fish ingestion, drinking water, soil
ingestion and dermal contact, edible plant ingestion,
and inhalation), fate and transport mechanisms, and
human as well as ecological receptors (Phenrat, et al.,
2016).

Moreover, data-driven frameworks significantly
improve uncertainty quantification, enabling decision-
makers to understand and plan for different
contamination scenarios. Probabilistic forecasts help
identify worst-case pathways, support remediation
contingency planning, and strengthen regulatory
submissions. ~ Enhanced interpretability = and
transparency of data-driven outputs also facilitate
better communication with stakeholders, regulators,
and affected communities, promoting trust and
supporting informed decision-making (Hoek, Beelen
& Brunekreef, 2011, Levy, 2013).

The environmental significance of adopting a data-
driven predictive framework is therefore substantial.
By reducing uncertainty, enhancing accuracy, and
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enabling more proactive interventions, these models
contribute to the protection of water resources, the
safeguarding of ecosystems, and the prevention of
human exposure to dangerous contaminants. They
support more efficient remediation investments,
reduce long-term environmental liabilities, and foster
sustainable land management practices. In an era
marked by increasing environmental pressure,
expanding industrial activities, and heightened
regulatory expectations, data-driven frameworks offer
a transformative pathway toward more -effective
subsurface contamination management and long-term
environmental resilience (Bowen & Wittneben, 2011,
Schaltegger & Csutora, 2012).

2.3. Data Acquisition and Characterization

Data acquisition and characterization form the
foundational pillar of any data-driven framework
designed to predict subsurface contamination
pathways, as the quality, diversity, and
representativeness of the data directly influence
modelling accuracy and remediation outcomes.
Subsurface environments are inherently complex,
governed by interactions among geological structures,
hydrological gradients, chemical processes, and
anthropogenic Capturing  this
complexity requires a multifaceted approach to data
gathering that integrates hydrogeological datasets, soil
geochemical profiles, geospatial mapping, historical
monitoring records, real-time sensor inputs, and
laboratory test results (Maas, Schaltegger & Crutzen,
2016, Tang & Luo, 2014). Each category of data offers
unique insights into contaminant behaviour, transport
dynamics, and environmental conditions, and together
they create a comprehensive information ecosystem
capable of supporting sophisticated predictive

disturbances.

analytics.

Hydrogeological datasets are among the most essential
components of subsurface contamination analysis, as
groundwater movement often dictates the direction,
velocity, and dispersion of contaminants. These
datasets typically include measurements of hydraulic
conductivity, aquifer thickness, groundwater
elevation, flow direction, and recharge rates. Pump
tests, slug tests, and hydraulic head measurements
provide quantitative indicators of how water and
consequently contaminants move through porous
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media. Spatial variations in hydraulic gradients reveal
preferential flow paths that may accelerate
contaminant  migration or redirect plumes
unexpectedly. Understanding these parameters is
crucial because even minor shifts in groundwater flow
can significantly impact plume evolution (Ascui,
2014, Hartmann, Perego & Young, 2013).
Furthermore, hydrogeological data enable the
calibration of predictive models by defining boundary
conditions and governing flow equations, reducing
uncertainty in model simulations.

Complementing hydrogeological data is soil
geochemistry, which provides detailed information on
the chemical composition, mineralogy, and physical
properties of subsurface materials. Soil pH, organic
content, clay fraction, cation-exchange capacity, and
mineral  constituents  influence  contaminant
adsorption, desorption, retention, and degradation. For
instance, hydrophobic organic contaminants tend to
sorb strongly to soils rich in organic matter, while
metals may form complexes with mineral surfaces
under specific geochemical conditions. These
processes determine whether contaminants remain
immobile or become mobilized under fluctuating
environmental conditions (Ascui & Lovell, 2012,
Steininger, et al, 2016). Soil geochemical
characterization is especially important for predicting
the behaviour of complex contaminants such as
DNAPLs, LNAPLs, or reactive species whose fate can
change dramatically with shifts in redox conditions,
moisture content, or microbial activity. By integrating
these geochemical attributes into data-driven models,
predictions become more representative of real-world
interactions, improving the reliability of pathway
forecasting.

Geospatial mapping plays a critical role in visualizing
and contextualizing subsurface data, enabling the
interpretation of spatial relationships that influence
contamination patterns. Geographic Information
Systems (GIS) allow the integration of diverse datasets
into layered spatial models that highlight geological
formations, land wuse, topographical gradients,
drainage networks, and historical industrial activity.
Remote sensing data, including satellite imagery and
aerial surveys, can reveal surface disturbances,
vegetation stress patterns, and potential contamination
sources that may not be immediately evident from
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ground-based observations (Burritt, Schaltegger &
Zvezdov, 2011, Gibassier & Schaltegger, 2015).
Geophysical mapping techniques such as electrical
resistivity tomography, ground-penetrating radar, and
electromagnetic surveys provide non-invasive insights
into subsurface structures, identifying fractures, voids,
stratigraphic boundaries, and anomalies that could act
as conduits or barriers to contaminant transport. These
geospatial datasets enhance model inputs by
improving spatial resolution and reducing the
uncertainty associated with interpolation between
sampling points. Figure 4 shows figure of two
conceptual plumes caused by DNAPL entry into
fractured rock presented by Parker, Cherry &
Chapman, 2012.
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Figure 4: Two conceptual plumes caused by DNAPL
entry into fractured rock (Parker, Cherry & Chapman,
2012).

Historical monitoring records are indispensable in
understanding long-term contamination trends and
validating predictive models. Many contaminated sites
have decades of data from groundwater sampling, soil
tests, well logs, and site investigations conducted
during previous remediation efforts. These records
document contaminant concentrations, plume shapes,
seasonal fluctuations, and responses to remediation
activities. By reconstructing historical plume
dynamics, analysts can identify recurring migration
patterns, detect plume stability or expansion, and
determine whether contaminants are degrading,
dissipating, or redistributing (Barzegar, et al., 2018,
Karandish, Darzi-Naftchali &  Asgari, 2017).
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Historical datasets also help differentiate between
active contamination sources and residual impacts
from past events. Incorporating these temporal
datasets into data-driven models enhances their ability
to simulate future scenarios based on observed trends,
increasing predictive confidence and supporting
regulatory reporting requirements.

Modern remediation projects increasingly rely on
sensor data to provide continuous, real-time insights
into subsurface conditions. Advanced sensor
technologies measure groundwater levels, moisture
content, temperature, electrical conductivity, and in
some cases, specific contaminant concentrations.
These sensors, often installed in monitoring wells or
embedded in soil matrices, transmit data through
automated networks, enabling remote monitoring and
dynamic model updates. Real-time data capture
transient events such as rainfall-driven infiltration,
pumping-induced hydraulic shifts, or sudden
contaminant releases that would otherwise remain
undetected with periodic sampling (Park, et al., 2016,
Ransom, et al., 2017). The integration of sensor data
strengthens the responsiveness of predictive models,
allowing them to adjust forecasts based on current
conditions and enhancing the capacity for early
warning detection of plume acceleration or deviation.

Laboratory test results provide high-precision
measurements that anchor predictive modelling in
scientific accuracy. Laboratory analyses quantify
concentrations of contaminants, evaluate chemical
speciation, and measure reaction rates under
controlled conditions. Tests such as grain-size
distribution, permeability measurements, sorption
isotherms, and batch degradation studies help
characterize the fundamental physical and chemical
interactions that govern contaminant behaviour.
Laboratory microcosms, for example, can be used to
simulate biodegradation potential under varying
environmental conditions, enabling analysts to assess
whether natural attenuation is likely to contribute
significantly to remediation (Naghibi, Pourghasemi &
Dixon, 2016, Rodriguez-Galiano, et al.,, 2014).
Furthermore, laboratory-derived parameters are
essential inputs for both physics-based and machine
learning models, ensuring that predictions reflect
empirically validated relationships rather than abstract
approximations.
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The integration of these diverse datasets is not without
challenges. Subsurface data are often incomplete,
spatially irregular, or collected using different
methodologies, resulting in inconsistencies that
complicate model calibration. Data gaps may occur in
regions where drilling is impractical, where historical
records are unavailable, or where sensors fail to
capture transient changes. Additionally, variability in
sampling frequency and measurement precision can
introduce bias if not properly accounted for. Thus,
preprocessing methods such as interpolation,
normalization, uncertainty quantification, and data
fusion become essential steps in preparing the dataset
for predictive modelling (Liakos, et al., 2018, Singh,
Gupta & Mohan, 2014). Machine learning techniques
can help mitigate some of these challenges by
identifying patterns within incomplete datasets,
estimating missing values, and detecting anomalies
indicative of measurement errors or unexpected
environmental events.

Despite these challenges, comprehensive data
acquisition and characterization significantly enhance
the predictive capability of subsurface contamination
models. The richness of multi-source datasets allows
data-driven frameworks to capture the heterogeneity,
nonlinearity, and dynamic behaviour of contamination
processes that traditional models often miss. By
leveraging high-resolution hydrogeological data,
detailed geochemical profiles, robust geospatial
mappings, long-term monitoring records, real-time
sensor streams, and laboratory analyses, predictive
models become more adaptive, accurate, and relevant
to real-world remediation demands. Environmental
managers can make more informed decisions,
regulators gain access to more defensible assessments,
and communities benefit from improved protection
against subsurface contamination risks (Ahmed, 2017,
Karpatne, et al., 2018).

Ultimately, the strength of any data-driven framework
lies in the quality and depth of its foundational data.
By embracing comprehensive and rigorous data
acquisition strategies, remediation practitioners can
overcome many of the uncertainties that have
historically hindered contamination prediction. This
holistic approach not only improves scientific
understanding of subsurface systems but also enables
more effective and proactive remediation planning an
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essential step toward achieving long-term
environmental sustainability and resilience.

2.4. Analytical ~and  Machine  Learning
Techniques

Analytical and machine learning techniques form the
computational core of a data-driven framework for
predicting subsurface contamination pathways,
enabling the integration of complex datasets and the
modelling of contaminant behaviour in ways that
exceed the capabilities of traditional approaches.
Subsurface systems are governed by nonlinear
interactions among geological structures,
hydrogeological dynamics, chemical reactions, and
anthropogenic influences (Liakos, et al., 2018, Singh,
Gupta & Mohan, 2014). These factors introduce
significant uncertainty and spatial variability, making
contaminant transport difficult to predict using
deterministic or empirical models alone. Machine
learning and advanced computational analytics allow
researchers and remediation practitioners to uncover
hidden patterns, quantify uncertainty, and simulate
contaminant migration with greater precision. Several
classes of computational techniques including
supervised learning, unsupervised clustering, physics-
informed models, geospatial analytics, and time-series
prediction play distinct but complementary roles in
capturing the multidimensional behaviour of
subsurface contamination.

Supervised learning algorithms are fundamental tools
for predicting contaminant concentrations, plume
extents, and transport pathways based on labelled
datasets. In these models, historical or experimentally
measured contaminant behaviours are used to train
algorithms to recognize relationships between input
variables and output responses. Techniques such as
random forests, support vector machines, gradient
boosting, and artificial neural networks can
incorporate large numbers of predictors, including soil
properties, groundwater velocity, hydraulic gradients,
and geochemical indicators (Ahmed, 2017, Karpatne,
et al., 2018). These models are particularly effective
when complex nonlinearities govern contaminant
movement. For instance, neural networks can
approximate intricate functional relationships that
describe adsorption-desorption cycles or multiphase
fluid interactions. Supervised learning is especially
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powerful for site-specific forecasting where historical
monitoring data provide a strong basis for model
calibration. Once trained, these models can generate
rapid predictions of plume trajectories or hotspot
locations, supporting timely decision-making in
remediation design and risk mitigation. However,
supervised learning relies on the availability of
labelled datasets; when such data are limited or
unevenly distributed, alternative or complementary
methods become necessary.

Unsupervised clustering offers a valuable approach for
identifying patterns and structural behaviours within
unlabelled subsurface datasets. Techniques such as k-
means clustering, hierarchical clustering, and density-
based spatial clustering of applications with noise
(DBSCAN) can group areas of similar
hydrogeological or geochemical properties, revealing
zones that may favour specific contaminant
behaviours. Clustering methods also help detect
anomalies, such as unexpected contaminant
concentration spikes or irregular flow patterns, which
may indicate new sources, preferential pathways, or
sampling errors (Lemming, 2010, Wang, et al., 2017).
In the context of plume delineation, unsupervised
algorithms can automatically segment spatial datasets
into regions representing high, moderate, or low
contaminant levels, improving the efficiency of
mapping and monitoring efforts. These unsupervised
insights enhance the robustness of supervised models
by enabling better feature engineering, reducing
dimensionality, and improving data quality through
anomaly detection.

Physics-informed models represent another vital
advancement in computational techniques for
subsurface contamination prediction. These methods
integrate machine learning with physical laws
governing groundwater flow and contaminant
transport, such as Darcy’s law, advection-dispersion
equations, and mass balance constraints. Physics-
informed neural networks (PINNs) enforce these
governing principles within the learning architecture,
ensuring that model outputs are not only data-driven
but also consistent with hydrological realities. This
hybrid modelling approach addresses the limitations
of purely statistical learning, which may produce
accurate predictions within the training domain but
generate unrealistic behaviours under extrapolation
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(An, et al., 2016, Mgbeahuruike, 2018). By embedding
physics into the computational framework, researchers
can simulate contamination pathways even in areas
with sparse data, reducing uncertainty and improving
model generalization. PINNs are especially useful in
scenarios involving multiphase flow, reactive
transport, or heterogeneous media where empirical
data alone cannot fully characterize contaminant
dynamics.

Geospatial analytics provides the spatial intelligence
required to understand how contaminants migrate
across complex terrains. Geographic Information
Systems (GIS), spatial interpolation methods, and
spatial machine learning algorithms allow the
integration of multilayer datasets including geological
maps, soil classifications, hydrological networks, and
historical contamination footprints into high-
resolution spatial models. Techniques such as kriging,
inverse distance weighting, and neural-network-based
spatial ~prediction help estimate contaminant
concentrations at unsampled locations, improving
spatial continuity and reducing uncertainty. Spatial
autocorrelation measures like Moran’s I and Geary’s
C reveal patterns of plume clustering or dispersion,
offering insights into how contaminants respond to
subsurface structures (Hardie & McKinley, 2014,
Williamson, 2011). More advanced geospatial
approaches, including spatial decision-support models
and geostatistical simulations, enable practitioners to
evaluate multiple contamination scenarios and select
optimal remediation strategies. Geospatial analytics is
also crucial for integrating remote-sensing data,
enabling the detection of surface indicators of
subsurface contamination such as vegetation stress or
soil anomalies.

Time-series prediction techniques add a temporal
dimension to contaminant pathway modelling,
enabling the forecasting of plume evolution under
changing environmental conditions. Historical
monitoring records such as groundwater levels,
seasonal  recharge rates, and contaminant
concentration trends form the basis for predictive
models that anticipate future plume behaviour.
Machine learning algorithms such as long short-term
memory (LSTM) networks, autoregressive integrated
moving average (ARIMA) models, and temporal
convolutional networks (TCNs) can analyse sequential
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data to predict fluctuations in contamination levels or
identify early warning signals of plume migration
acceleration. Time-series models are particularly
valuable for capturing the effects of climatic events,
land-use changes, pumping activities, or remediation
interventions  that alter hydraulic conditions
(Cappuyns & Kessen, 2014, Williamson, et al., 2011).
They also allow continuous model updating as new
data become available, making predictions more
adaptive and reflective of real-time environmental
dynamics.

The integration of these computational techniques
enhances predictive accuracy and reduces the
uncertainties that traditionally plague subsurface
contamination modelling. By combining supervised
models for targeted prediction, unsupervised methods
for pattern recognition, physics-informed models for
constraint-based learning, geospatial analytics for
spatial interpretation, and time-series forecasting for
temporal insights, a comprehensive framework
emerges that can accommodate the inherent
complexity of subsurface environments. This
integrated computational approach enables multi-
source data fusion, allowing diverse datasets such as
hydrogeological measurements, soil geochemistry,
geophysical surveys, laboratory analyses, and real-
time sensor outputs to inform a unified predictive
model (Mitchell, 2012, Sweeney & Kabouris, 2017).
Machine learning enhances the ability to detect
nonlinear  interactions,  while  physics-based
constraints ensure realism and scientific validity.
Geospatial and temporal techniques add holistic
dimensions that reflect the true variability of
environmental systems.

Moreover, advanced analytics and machine learning
facilitate uncertainty quantification, an essential
component of credible contamination pathway
prediction. Techniques such as Monte Carlo
simulation, Bayesian inference, and ensemble
modelling enable analysts to evaluate model
reliability, identify high-risk zones, and support
decision-making under uncertainty. These methods
provide probabilistic predictions that reflect not only
the most likely plume behaviour but also the range of
possible outcomes, improving transparency in
regulatory reporting and remediation planning
(Cheng, et al., 2011, Herat & Agamuthu, 2012).
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As computational capacity and data availability
continue to expand, machine learning models can be
continuously refined, incorporating emerging data
streams from remote sensing platforms, autonomous
monitoring systems, and advanced laboratory
techniques. This adaptability is crucial, as subsurface
contamination is rarely static; pathways evolve with
shifts in groundwater dynamics, climatic patterns, and
human activities. Data-driven computational methods
thus enable dynamic modelling frameworks that
remain relevant throughout the lifecycle of a
remediation project, from initial site assessment to
long-term monitoring (Boriana, 2017, Hou & Al-
Tabbaa, 2014).

Ultimately, the use of analytical and machine learning
techniques in subsurface contamination pathway
prediction represents a transformative shift in
environmental modelling. These techniques empower
practitioners to overcome the limitations of traditional
deterministic models, enabling deeper insights into
complex environmental behaviours, improving
predictive accuracy, and enhancing the effectiveness
of remediation strategies. By integrating scientific
principles with advanced computation, data-driven
frameworks provide a powerful foundation for
protecting groundwater resources, ensuring regulatory
compliance, and promoting sustainable environmental
management in increasingly complex remediation
landscapes.

2.5. Framework Architecture for Predicting
Contamination Pathways

The architecture of a data-driven framework for
predicting subsurface contamination pathways in
complex remediation projects must be designed to
integrate diverse datasets, sophisticated modelling
techniques, and scientifically grounded simulation
tools into a unified system capable of producing
accurate and actionable predictions. This framework
begins with a robust data preprocessing pipeline,
progresses into advanced model development and
calibration, incorporates seamless coupling with
hydrogeological simulations, and culminates in
contamination pathway estimation and risk-zone
delineation. Each component plays a crucial role in
capturing the multifaceted dynamics of contaminant
migration, addressing uncertainties, and supporting
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effective remediation decision-making (Ferdinand &
Yu, 2016, Koop & van Leeuwen, 2017).

Data preprocessing forms the foundation of the
framework, ensuring that raw datasets from various
sources are cleaned, standardized, and structured for
analysis.  Subsurface datasets such as soil
geochemistry, hydraulic measurements, geospatial
maps, laboratory test results, and sensor data often
vary widely in temporal frequency, spatial resolution,
and measurement units. Many datasets contain
missing values, noise, or inconsistencies arising from
sampling errors, instrument limitations, or incomplete
historical records. Preprocessing therefore includes
data cleaning techniques such as noise filtering,
interpolation of missing values, normalization of
variable scales, and transformation of categorical
inputs into quantitative features. Spatial datasets are
georeferenced and harmonized to ensure alignment
across mapping layers, while temporal datasets are
synchronized to capture the sequence of
hydrogeological events that influence contaminant
transport (Jayasooriya, 2016, Sayles, 2017). Feature
engineering may also be applied to extract meaningful
indicators such as hydraulic gradients, soil moisture
indices, or contaminant decay coefficients, enabling
machine learning models to capture complex
interactions. The objective of preprocessing is to build
a coherent dataset that accurately reflects subsurface
conditions and supports reliable model development.

Once data preprocessing is complete, the framework
advances to model development, where analytical and
machine learning techniques are deployed to learn
contaminant behaviour from the input data. Model
development typically involves selecting appropriate
algorithms such as neural networks, random forests,
gradient boosting machines, or physics-informed
models based on the characteristics of the
contamination problem. For example, neural networks
may be suited to capturing nonlinear interactions
among geochemical and hydrogeological variables,
while physics-informed neural networks integrate
governing fluid-flow equations directly into the
learning process (Kato, 2010, Meerow & Newell,
2017). In developing these models, training datasets
are used to calibrate algorithm parameters, while
validation datasets ensure that predictions generalize
to unseen conditions. Hyperparameter tuning methods,
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including grid search, Bayesian optimization, or
evolutionary algorithms, refine model performance by
identifying optimal configurations for depth, learning
rates, regularization strategies, or decision splits.
Throughout this process, cross-validation techniques
help reduce overfitting and improve the robustness of
model outputs. The model development stage is
iterative, involving repeated cycles of refinement,
performance evaluation, and error analysis to align the
predictive model with observed contaminant patterns.

A key strength of the proposed framework lies in its
integration  of  data-driven = models  with
hydrogeological simulations. Traditional
hydrogeological models, based on Darcy’s law and
advection—dispersion principles, offer established
scientific grounding and can simulate groundwater
flow and contaminant movement under controlled
assumptions. However, they often struggle to
accommodate the full complexity of real-world
subsurface conditions. Coupling these simulations
with machine learning models enables the framework
to benefit from both empirical and physics-based
perspectives (Furniss, 2011, Handmer, et al., 2012). In
this  integrated  architecture,  hydrogeological
simulations provide boundary conditions, hydraulic
heads, aquifer properties, and flow velocities that
serve as inputs or constraints for data-driven models.
Conversely, machine learning outputs including
predicted contaminant concentrations, mobility
indicators, or pathway probabilities can refine or
adjust simulation parameters, improving the realism of
physics-based modelling. This bidirectional coupling
allows the system to generate hybrid predictions that
are grounded in scientific principles while remaining
sensitive to empirical patterns not captured by
conventional models.

Pathway estimation represents one of the most critical
outcomes of the integrated framework. Once the
models have been developed and coupled with
hydrogeological simulations, the system predicts
contamination pathways by analysing the interactions
between contaminant properties, soil characteristics,
flow dynamics, and environmental conditions. These
predictions often take the form of spatially explicit
plume migration maps that trace the expected
direction, speed, and extent of contaminant travel.
Machine learning models may generate probability
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surfaces indicating the likelihood of contaminant
presence  across the  subsurface, enabling
environmental managers to identify potential
preferential flow paths, plume divergence zones, or
stagnation points. Time-series prediction components
capture temporal variations, projecting how pathways
may shift under seasonal recharge, pumping activities,
or remediation interventions (Hubbard, et al., 2018,
Singh, van Werkhoven & Wagener, 2014).
Incorporating uncertainty quantification adds depth to
pathway estimation, allowing analysts to visualize
confidence intervals or worst-case scenarios and plan
accordingly. This probabilistic perspective is
particularly useful in complex remediation
environments where geological heterogeneity and
incomplete data introduce significant uncertainties.

Risk-zone delineation is the culminating step of the
framework, translating pathway predictions into
actionable insights for remediation planning,
regulatory compliance, and risk communication. Risk
zones represent spatial areas categorized according to
contamination likelihood, potential exposure severity,
or environmental vulnerability. These zones often
classified as high-risk, moderate-risk, or low-risk are
delineated by combining predicted contaminant
concentrations, plume trajectories, groundwater usage
patterns, proximity to receptors, and regulatory
thresholds. Geospatial analytics play a central role in
converting model outputs into risk-zone maps that
align with real-world coordinates and site boundaries
(Field, 2012, McMillan, et al., 2016). Environmental
risk indices may also be calculated to quantify hazards
to drinking water sources, ecosystems, infrastructure,
or human populations. Such delineation supports
strategic decision-making by identifying priority
remediation areas, informing the placement of
monitoring wells, guiding control measures, and
optimizing the allocation of financial and technical
resources. Risk-zone mapping further enhances
transparency by providing stakeholders such as
regulators, community groups, and remediation
contractors with clear visualizations of contamination
risks (Edwards, et al., 2012, Green, 2016).

The integrated framework architecture also
incorporates a feedback mechanism that enables
continuous improvement. As new monitoring data
become available from field measurements, sensors,
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or laboratory analyses they are fed back into the
preprocessing pipeline, allowing the models to be
retrained and refined. This dynamic updating ensures
that predictions remain accurate and reflect evolving
subsurface conditions. The iterative feedback loop is
particularly important for long-term remediation
projects, where environmental conditions may change
significantly over time due to climatic events, land-use
changes, or engineered interventions. The adaptability
of the framework allows it to remain relevant and
reliable throughout the lifecycle of the remediation
process (Viviroli, et al., 2011, Watts, et al., 2015).

Another essential component of the framework is
model interpretability and transparency. While
machine learning models can produce highly accurate
predictions, their complexity can sometimes hinder
understanding of the underlying processes. To address
this, interpretability tools such as feature importance
scores, SHAP values, or sensitivity analyses can be
incorporated to reveal which variables most influence
contaminant pathways. This not only aids scientific
understanding but also increases confidence among
regulators and practitioners who rely on the model’s
outputs for decision-making. Transparent reporting of
model assumptions, uncertainties, and limitations
further enhances the credibility of the framework
(Nelitz, Boardley & Smith, 2013, Perra, et al., 2018).

Overall, the proposed integrated framework
architecture unites data preprocessing, advanced
model development, hydrogeological simulation
coupling, pathway estimation, and risk-zone
delineation into a cohesive system capable of
addressing  the  complexity = of  subsurface
contamination. By combining machine learning with
physics-based modelling and geospatial analysis, the
framework overcomes the limitations of traditional
methods and provides deeper insights into
contaminant behaviour. Its dynamic, data-driven
nature ensures adaptability and continuous
improvement, while its focus on risk communication
and decision support enhances practical applicability
(Leibowitz, et al., 2014, Ribeiro Neto, et al., 2014). As
contaminated sites grow in number and complexity,
such comprehensive frameworks are essential for
protecting groundwater resources, ensuring public
health, and supporting sustainable environmental
remediation practices.
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2.6. Uncertainty Quantification and Model
Validation

Uncertainty quantification and model validation are
essential components of a data-driven framework for
predicting subsurface contamination pathways, as they
ensure that model outputs are scientifically credible,
operationally reliable, and suitable for supporting
high-stakes  remediation decisions.  Subsurface
environments are inherently complex, characterized
by heterogeneous geological formations, variable
hydrogeological conditions, evolving contaminant
properties, and incomplete or noisy datasets. These
complexities introduce different types of uncertainty
ranging from measurement errors and spatial gaps to
model structure limitations and parameter variability
that can significantly influence the accuracy of
contamination pathway predictions (Hanson, et al.,
2012, Wagesho, 2014). A robust framework must
therefore incorporate systematic approaches for
assessing model robustness, evaluating prediction
confidence, performing sensitivity analyses, and
validating results against real-world observations and
historical plume behaviour. By doing so, it strengthens
the trustworthiness of the predictive system and
provides decision-makers with the information
necessary to manage risk effectively.

Model robustness assessment begins with identifying
sources of uncertainty within the dataset and the
modelling process. In subsurface contamination
modelling, uncertainties may arise from sparse
monitoring well distributions, irregular sampling
intervals, sensor inaccuracies, incomplete geological
maps, laboratory measurement variability, or
simplifying  assumptions in  hydrogeological
simulations. Data-driven models themselves may
introduce uncertainties through algorithm selection,
hyperparameter tuning, and the sensitivity of
predictions to training data variability. To address
these issues, ensemble modelling techniques are often
deployed. Ensemble approaches, such as bagging,
boosting, or random forests, generate multiple models
using variations of the dataset or algorithmic
parameters and aggregate the results to produce a more
stable and robust prediction (Langat, Kumar & Koech,
2017, Nashwan, et al., 2018). This reduces the
influence of outliers and compensates for weaknesses
in individual models. Variational methods and dropout
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sampling in neural networks also provide probabilistic
interpretations, allowing the model to quantify
uncertainty in its predictions. Such robustness
assessments help determine whether the model can
generalize beyond training conditions and perform
reliably under different contamination scenarios.

Evaluating prediction confidence is another critical
dimension of uncertainty quantification. Confidence
assessment involves estimating the likelihood that
predicted contamination pathways or plume extents
fall within acceptable error margins given the
available data and model assumptions. Probabilistic
modelling techniques, including Bayesian inference,
Gaussian processes, and Monte Carlo simulations, are
frequently employed to estimate prediction
distributions rather than single deterministic outputs.
These techniques generate confidence intervals or
probability density maps that show the range of
possible contamination pathways and highlight areas
with high or low prediction certainty (Gober &
Kirkwood, 2010, Mark, et al.,, 2010). For example,
Bayesian models treat parameters as probability
distributions rather than fixed values, updating their
estimates as new data become available. By doing so,
they capture the evolving nature of subsurface
conditions and provide decision-makers with
transparent information about prediction reliability.
Monte Carlo simulations allow the model to run
thousands of iterations using random variations of key
parameters such as hydraulic conductivity, porosity,
source concentration, or degradation rates, thereby
revealing how parameter variability influences the
predicted plume. These confidence measures help
remediation engineers plan for best-case and worst-
case scenarios, improving contingency planning and
risk communication.

Sensitivity analysis plays a vital role in understanding
how different input variables influence model outputs.
Because subsurface contamination pathways depend
on a complex interplay of geological, hydrological,
and chemical factors, identifying the most influential
parameters helps refine both modelling accuracy and
field investigation priorities. Sensitivity analysis
methods such as local sensitivity (one-factor-at-a-
time) and global sensitivity approaches (Sobol indices,
Morris screening) quantify how changes in specific
inputs affect the variation in predicted outcomes. For
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instance, a sensitivity analysis may reveal that
hydraulic conductivity variations significantly alter
plume migration directions, while soil organic content
plays a lesser role in certain contexts. Such insights
guide field teams in prioritizing the collection of high-
impact data, optimizing the placement of monitoring
wells, and allocating resources toward reducing
critical uncertainties (Essaid, Bekins & Cozzarelli,
2015, Kobus, Barczewski & Koschitzky, 2012).
Sensitivity analysis also evaluates model stability,
determining whether slight changes in environmental
conditions or dataset characteristics lead to
disproportionately large shifts in predictions. Stable
models yield consistent results even when faced with
minor variations, while unstable models require
further refinement or restructuring. By systematically
identifying the drivers of prediction variability,
sensitivity analysis enhances both model development
and interpretability.

Model validation is arguably the most important step
in ensuring that data-driven contamination predictions
reflect real-world conditions. Validation involves
comparing model outputs with observed field data,
historical plume behaviour, or independent datasets
that were not used during model training. This step
confirms whether the framework can accurately
reproduce known contaminant migration patterns and
reliably forecast future conditions. Field-based
validation may include groundwater sampling,
borehole logs, soil core analyses, geophysical surveys,
or sensor-based measurements (Kuppusamy, et al.,
2016, Majone, et al., 2015). Model predictions of
plume boundaries, contaminant concentrations, or
migration directions are compared with observed
measurements using statistical metrics such as root
mean square error (RMSE), Nash—Sutcliffe efficiency,
R-squared values, or spatial similarity indices.
Discrepancies between predictions and observations
highlight areas where the model may require
recalibration, additional data inputs, or structural
refinements.

Historical plume behaviour offers another important
validation avenue. Many contaminated sites have
long-term monitoring records documenting how
contamination spread over years or decades. By
simulating past contamination dynamics and
comparing outputs with recorded plume shapes,
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researchers can assess whether the model captures the
temporal evolution of contamination. If the model
successfully  reconstructs  historical  patterns,
confidence in its predictive power for future scenarios
increases. Conversely, if the model fails to align with
historical behaviours, this signals gaps in the data
inputs, missing physical processes, or inadequacies in
the modelling architecture. Time—lag validation, in
which models are tested on data from subsequent
monitoring periods, further strengthens validation by
demonstrating whether predictions remain accurate as
conditions evolve (Yaron, Dror & Berkowitz, 2012,
Zeidan, 2017).

Cross-validation techniques are essential for model
generalization. K-fold cross-validation, leave-one-out
validation, and spatial cross-validation allow the
model to be tested on multiple partitions of the dataset
to ensure it performs consistently across different
spatial and temporal subsets. Spatial cross-validation
is particularly important for subsurface modelling
because spatial autocorrelation can artificially inflate
performance metrics if training and validation datasets
are too similar. By separating data into geographically
distinct areas, spatial cross-validation ensures that the
model can predict contamination dynamics in
unmonitored regions, a critical requirement for
practical application (Binley, et al., 2015, Francisca, et
al., 2012).

The final aspect of uncertainty quantification and
validation involves integrating results into decision-
making tools. Visualization of uncertainty is essential
for communicating results to regulators, stakeholders,
and remediation engineers. Probabilistic plume maps,
uncertainty heatmaps, and confidence-band time-
series plots help illustrate where model predictions are
strong and where caution is warranted. Decision-
support systems may incorporate uncertainty
thresholds to trigger alerts, guide monitoring efforts,
or prioritize remediation actions. For example, a high-
uncertainty zone may prompt additional field
sampling, while a high-confidence plume prediction
may justify immediate intervention measures such as
barrier installation or groundwater extraction
(Filippini, 2015, Mallants, et al., 2010).

Ultimately, uncertainty quantification and model
validation strengthen the scientific, regulatory, and
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operational integrity of the contamination prediction
framework. By identifying uncertainties, evaluating
prediction confidence, understanding sensitivity to
key variables, and validating results against real-world
behaviour, the framework becomes more transparent,
reliable, and adaptable. These processes not only
enhance technical performance but also foster trust
among stakeholders, ensuring that remediation
decisions are grounded in robust evidence. As
subsurface contamination challenges grow more
complex and environmental expectations intensify,
rigorous uncertainty quantification and validation
remain essential pillars of responsible and effective
environmental modelling.

2.7. Case Studies and Practical Applications

Case studies and practical applications of data-driven
frameworks for predicting subsurface contamination
pathways provide essential insights into how these
advanced systems perform under real-world
conditions and demonstrate their superiority over
conventional deterministic models. By analyzing
actual and simulated remediation projects, it becomes
clear that data-driven approaches not only enhance
predictive accuracy but also support more informed
decision-making, resource optimization, and long-
term environmental monitoring. These case examples
illustrate how integrating machine learning, geospatial
analytics, physics-informed modelling, and multi-
source environmental data can reveal patterns and
pathways previously obscured by the limitations of
traditional modelling tools (Hipsey, et al., 2015,
Scheidt, Li & Caers, 2018).

One compelling example involves an industrial site
contaminated with chlorinated solvents leaked from
historical degreasing operations. Conventional plume
modelling based on deterministic hydrogeological
simulations had struggled to accurately represent
observed plume behaviour due to the site’s
heterogeneous subsurface conditions, including
fractured bedrock and variable soil permeability. A
data-driven framework was implemented to improve
pathway predictions by integrating decades of
monitoring well records, soil geochemistry,
geophysical surveys, and real-time groundwater level
sensors. Machine learning algorithms were trained to
identify relationships between geological features and
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contaminant concentrations, while physics-informed
neural networks enforced continuity with groundwater
flow principles. The resulting predictions showed a
significantly improved match with field observations
compared to deterministic models, particularly in
identifying secondary migration pathways that had
previously gone undetected (Deschaine, 2014, Kresic
& Mikszewski, 2012). This enhanced predictive
capability allowed remediation engineers to redesign
extraction well placement, prioritize high-risk zones,
and avoid unnecessary drilling in areas that posed
minimal contamination risk. Ultimately, the updated
remediation strategy reduced operational costs and
shortened cleanup timelines, demonstrating the
practical value of the data-driven framework.

A second example can be drawn from a simulated
petroleum spill scenario designed to test the robustness
of different modelling approaches under varying
hydrogeological  conditions. = The  simulation
incorporated synthetic datasets representing sandy
aquifers, clay lenses, and fractured rock systems to
mimic  real-world  complexity.  Deterministic
advection—dispersion models produced plume
predictions that were highly sensitive to small
variations in soil permeability and groundwater
gradients, resulting in large uncertainties in predicted
plume length and direction. In contrast, the data-driven
framework utilized unsupervised clustering to classify
subsurface regions with similar geophysical
characteristics, improving the representation of
preferential flow zones (Bello-Dambatta & Javadi,
2010, Felisa, et al., 2015). Supervised learning models,
trained on synthetic tracer test results, provided more
reliable estimates of contaminant velocity and
attenuation rates across different subsurface materials.
When predictions were compared to the “true”
simulated plume, the data-driven approach
demonstrated substantially higher spatial accuracy and
reduced prediction error. This case not only validated
the framework’s predictive strength but also
highlighted its resilience to parameter uncertainty an
essential advantage when working with incomplete or
variable field data.

A third case study involved a former agricultural site
impacted by nitrate leaching from fertilizer
applications.  Predicting nitrate  migration is
particularly challenging because its movement
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depends on dynamic interactions among soil moisture,
microbial processes, groundwater recharge, and
agricultural practices. Deterministic models often
oversimplify these interactions, leading to inaccurate
forecasts of groundwater contamination hotspots. In
this agricultural case, the data-driven framework
integrated remote-sensing data on vegetation health,
rainfall records, soil moisture sensors, groundwater
monitoring data, and laboratory nitrate measurements.
Time-series prediction techniques, such as long short-
term memory (LSTM) networks, captured seasonal
variations in nitrate mobility, while geospatial
analytics mapped the spatial distribution of high-risk
zones (Liang, 2018, McGrath, Reid & Tran, 2017).
The resulting predictions enabled water managers to
implement targeted mitigation strategies such as
buffer strips, adjusted fertilizer application schedules,
and enhanced monitoring in areas projected to have
elevated nitrate concentrations. By comparing these
predictions with field measurements collected over
several years, the framework demonstrated high
temporal accuracy and provided valuable insights for
regulatory agencies tasked with protecting drinking
water sources.

Another practical application can be observed in urban
brownfield redevelopment projects, where complex
mixtures of contaminants often coexist due to
historical industrial usage. One such project involved
a former manufacturing site with petroleum
hydrocarbons, heavy metals, and polycyclic aromatic
hydrocarbons (PAHs). Traditional plume models
could not adequately capture interactions between
these contaminants or account for the influence of
urban infrastructure on subsurface flow patterns. The
data-driven framework implemented for this project
used multi-contaminant modelling techniques,
integrating soil vapor intrusion measurements,
groundwater data, building foundation maps, and
chemical degradation profiles (Bello-Dambatta, 2010,
Leeson, et al, 2013). Machine learning algorithms
identified zones where co-contaminant interactions
accelerated degradation or mobilization, while
geospatial analytics mapped risk zones under existing
and future land-use scenarios. This allowed urban
planners and developers to make informed decisions
regarding  excavation  requirements,  building
foundation design, and long-term monitoring plans.
The framework also facilitated compliance with
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regulatory risk assessment requirements by producing
transparent and scientifically defensible predictions.

A further example involves a coastal industrial facility
where saline intrusion complicates contaminant
transport dynamics. Deterministic models struggled to
account for density-driven flow processes affecting
the migration of heavy metals and industrial solvents.
A data-driven approach combined seawater intrusion
models, tidal fluctuation data, electrical conductivity
measurements, and chemical concentration profiles to
better represent the dynamic interface between
freshwater and saline water. Physics-informed
machine learning models simulated contaminant
movement under fluctuating tidal conditions,
revealing periodic shifts in plume direction and
intensity that were missed by traditional methods
(Awe, Akpan & Adekoya, 2017, Osabuohien, 2017).
These insights helped engineers design adaptive
remediation systems capable of responding to tidal
cycles, including adjustable pumping schedules and
dynamic barrier controls, ultimately improving
remediation efficiency.

Across all these cases, a consistent theme emerges:
data-driven frameworks provide superior predictive
power by capturing the nonlinearity, heterogeneity,
and temporal variability inherent in subsurface
environments. Their ability to leverage diverse
datasets allows them to uncover subtle patterns and
interactions that deterministic models lack the
flexibility to represent. Additionally, the probabilistic
outputs generated by many data-driven models
enhance decision-making by quantifying uncertainty,
allowing remediation planners to make risk-informed
choices rather than relying on single deterministic
estimates (Awe & Akpan, 2017).

Decision-support relevance is another major benefit
highlighted in these case studies. The integration of
data-driven outputs into geospatial visualization tools
enables stakeholders to interact with contamination
maps, identify priority zones, and evaluate
remediation  alternatives. These visuals help
regulators, community members, and project
engineers understand contamination risks more
clearly, fostering transparency and collaborative
decision-making. Furthermore, many data-driven
frameworks support scenario analysis, allowing users
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to simulate the effects of different remediation
strategies, climatic events, or operational changes.
This level of adaptability is essential in the face of
evolving environmental conditions and regulatory
expectations (Akpan, et al., 2017, Oni, et al., 2018).

Importantly, the transition from deterministic to data-
driven approaches does not eliminate the role of
traditional hydrogeological modelling; rather, it
enhances it. By coupling data-driven insights with
physics-based simulations, the hybrid models
produced in many of these case studies capture both
empirical patterns and scientifically grounded
processes. This integration leads to more reliable
forecasts, better alignment with field observations, and
improved remediation outcomes (Ike, et al., 2018).

Overall, the case studies demonstrate that data-driven
frameworks provide tangible advantages across a wide
range of contamination scenarios. They improve
predictive accuracy, reduce uncertainty, optimize
remediation resource allocation, and strengthen
regulatory compliance. Whether applied to industrial
sites, agricultural landscapes, urban environments, or
coastal zones, these frameworks consistently
outperform conventional models and represent a
transformative  advancement in environmental
remediation practice. As environmental challenges
intensify and data availability expands, data-driven
approaches will continue to play a central role in
safeguarding groundwater resources, protecting public
health, and enabling effective and sustainable
remediation strategies (Awe, 2017, Osabuohien,
2019).

2.8. Conclusion

The development of a data-driven framework for
predicting subsurface contamination pathways offers a
transformative  advancement in environmental
remediation, providing a more accurate, adaptive, and
holistic understanding of contaminant behaviour
beneath the ground. The key findings across the
framework components reveal that integrating diverse
datasets ranging from hydrogeological measurements
and soil geochemistry to geospatial mapping,
monitoring records, sensor networks, and laboratory
analyses greatly enhances the capacity to represent the
complexity of subsurface systems. Machine learning
techniques, physics-informed modelling, geospatial
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analytics, and time-series prediction collectively
address the nonlinearities and uncertainties that
traditional deterministic models often fail to capture.
Through this multidimensional analytical architecture,
the framework generates more precise plume
forecasts, identifies previously undetected migration
pathways, delineates high-risk zones, and improves
the scientific and operational foundation for
remediation decision-making.

In practical terms, the framework significantly
strengthens remediation engineering by improving the
accuracy of contamination assessments and enabling
more strategic resource allocation. Enhanced pathway
prediction supports optimized well placement,
targeted soil or groundwater treatment, and more
efficient remediation system designs. The integration
of uncertainty quantification further enriches decision-
making, providing probabilistic insights that guide
risk-based planning and regulatory compliance. The
case studies demonstrate that this approach not only
improves predictive reliability but also reduces long-
term remediation costs, shortens project timelines, and
enhances stakeholder confidence by offering
transparent, data-supported  outcomes. The
framework’s ability to incorporate historical plume
behaviour and dynamically update predictions as new
information becomes available highlights its value for
long-term monitoring and adaptive management.

Despite its strengths, several limitations remain. The
accuracy of predictions is still constrained by data
availability, spatial coverage, and sensor reliability.
Heterogeneous subsurface environments can produce
complex interactions that challenge even advanced
machine learning models. Computational demands
may be significant when integrating large datasets or
running hybrid simulations. Moreover, while physics-
informed models improve predictive realism, they still
depend on accurate representation of physical
processes and high-quality boundary conditions.
There is also an ongoing need to enhance model
interpretability, ensuring that highly technical outputs
can be clearly understood by regulators, engineers, and
community stakeholders.

Future research should prioritize real-time data
integration to enhance responsiveness to evolving
subsurface conditions. Incorporating data streams
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from advanced sensing technologies such as
distributed  fiber-optic autonomous
subsurface probes, and novel geophysical imaging
methods will increase temporal and spatial resolution,
improving both predictive accuracy and early-warning
capabilities. Expanding the use of hybrid models that
further unify machine learning with multiphase flow
and reactive transport simulations will help capture
more complex contamination behaviours. Research
should also explore cloud-based platforms and edge
computing to support scalable, real-time modelling
across large or remote sites. Additionally, developing
explainable Al tools for environmental applications

sensing,

will help bridge the gap between computational
sophistication and practical usability.

In conclusion, the data-driven framework represents a
powerful and forward-looking

understanding and managing
contamination. By integrating multi-source data with
advanced analytical tools, it provides deeper insight,
greater predictive confidence, and more effective
remediation strategies than traditional methods.
Continued innovation in real-time monitoring,
advanced  sensing, hybrid modelling, and
explainability will further strengthen this framework,
supporting sustainable environmental protection and

approach  to
subsurface

more resilient remediation practices in increasingly
complex contamination scenarios.
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