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Abstract- Effective remediation of contaminated sites 

increasingly depends on advanced predictive capabilities 

that can accurately characterize and forecast subsurface 

contamination pathways. Traditional site assessment 

methods often struggle to capture the spatial heterogeneity, 

nonlinear contaminant transport dynamics, and multi-

source pollution interactions typical of complex 

remediation projects. This study proposes a comprehensive 

data-driven framework that integrates geospatial analytics, 

machine learning models, and hydrogeological simulation 

to enhance the prediction of contaminant migration in 

heterogeneous subsurface environments. The framework 

leverages high-resolution datasets including soil 

properties, hydrological gradients, geochemical indicators, 

and historical contaminant concentrations to identify key 

transport mechanisms and generate predictive 

contamination plume trajectories. By combining 

supervised learning algorithms with physics-informed 

constraints, the model captures both the statistical patterns 

and mechanistic behaviors governing subsurface pollutant 

movement. In addition, the framework incorporates 

uncertainty quantification techniques to evaluate 

prediction confidence and guide decision-making under 

data limitations. Case applications demonstrate that the 

data-driven approach outperforms traditional 

deterministic models in forecasting plume evolution, 

delineating risk zones, and identifying potential receptor 

exposure pathways. Results further show that integrating 

multi-source datasets significantly improves model 

robustness, offering actionable insights for remediation 

design, resource allocation, and long-term monitoring 

strategies. The study contributes a scalable methodology 

capable of supporting remediation engineers, 

environmental regulators, and policymakers in optimizing 

site-specific and regional contamination management. By 

bridging advanced analytics with domain knowledge, the 

proposed framework supports early detection of 

contamination hotspots, enhances risk assessment, and 

promotes cost-effective remediation planning. Ultimately, 

this data-driven predictive architecture represents a 

transformative tool for managing subsurface 

contamination under increasing environmental and 

regulatory pressures, enabling more precise, transparent, 

and adaptive remediation interventions. Future work will 

explore real-time data integration, improved 

interpretability of machine learning models, and 

incorporation of emerging sensing technologies to further 

strengthen predictive accuracy and support sustainable 

environmental restoration. 
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I. INTRODUCTION 

 

Subsurface contamination remains one of the most 

complex and persistent challenges in environmental 

remediation, largely due to the heterogeneous nature 

of soil structures, variable hydrogeological conditions, 

and the dynamic behaviour of contaminant migration. 

Pollutants originating from industrial spills, leaking 

storage systems, agricultural runoff, and legacy waste 

sites often move unpredictably through porous media, 

creating hidden pathways that threaten groundwater 

resources, ecological stability, and human health. 

Traditional predictive approaches primarily 

deterministic models and manually interpreted 

hydrogeological assessments frequently struggle to 

capture these complexities because they rely on 

limited datasets, oversimplified transport assumptions, 

and static boundary conditions that fail to reflect real-

world variability (Alibakhshi, et al., 2017, Zhang, et 

akl., 2013). As remediation projects become more 

intricate, involving multiple contaminant sources, 

fluctuating hydraulic gradients, and evolving land-use 

patterns, the shortcomings of conventional tools 

become increasingly evident. Their inability to 

integrate high-resolution spatial data, incorporate 
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temporal changes, or adapt to emerging field 

information often results in inaccurate plume 

forecasting, inefficient remediation planning, and 

elevated project costs (Faseemo, et al., 2009). 

The growing availability of multi-source 

environmental datasets, advancements in sensing 

technologies, and the rise of scalable analytical 

methods now provide an opportunity to transform 

subsurface contamination prediction. Data-driven 

techniques particularly those leveraging machine 

learning, geospatial analytics, and hybrid 

computational models offer the capacity to process 

complex datasets, identify hidden relationships, and 

generate more realistic representations of transport 

mechanisms across diverse soils and aquifers. By 

integrating physics-informed constraints with data 

analytics, these approaches address the limitations of 

purely empirical or purely mechanistic models, 

enabling more precise delineation of contaminant 

pathways and more reliable forecasting of plume 

evolution. The adoption of data-driven frameworks 

also enhances decision-making by providing 

probabilistic insights, quantifying uncertainty, and 

improving the interpretability of subsurface dynamics. 

In complex remediation environments where 

uncertainty is high and stakes are significant, such 

frameworks represent a critical advancement 

(Manfreda, et al., 2018, Sims & Colloff, 2012). They 

allow practitioners to optimize resource allocation, 

accelerate risk assessments, and design interventions 

that are both targeted and adaptive. In this context, a 

data-driven framework becomes essential for 

managing subsurface contamination with greater 

accuracy, transparency, and operational efficiency. 

2.1. Methodology 

This study adopts a data-driven, hybrid analytical 

methodology to predict subsurface contamination 

pathways in complex remediation projects by 

integrating heterogeneous environmental data 

streams, advanced machine learning techniques, and 

spatial–hydrogeological reasoning. The 

methodological design is informed by data-centric 

predictive frameworks applied in environmental 

monitoring, groundwater contamination mapping, and 

decision-support systems, emphasizing scalability, 

uncertainty handling, and real-time adaptability. The 

approach combines IoT-enabled sensing, remote 

sensing observations, historical site investigation 

records, and hydrogeophysical datasets to construct a 

unified analytical environment capable of learning 

complex subsurface behavior beyond the limitations 

of purely deterministic models. 

Primary data sources include in-situ sensor networks 

measuring groundwater quality parameters, soil 

moisture, hydraulic head, redox potential, and 

contaminant concentrations, alongside remote sensing 

products capturing land cover dynamics, surface 

moisture anomalies, vegetation stress, and terrain 

attributes. Historical borehole logs, geotechnical 

profiles, laboratory contaminant analyses, remediation 

records, and hydrogeological conceptual site models 

are incorporated to provide contextual grounding. 

These datasets are ingested through an automated data 

acquisition pipeline that standardizes formats, 

timestamps observations, and performs quality control 

procedures such as noise filtering, missing-value 

imputation, and outlier detection to ensure analytical 

robustness. 

Feature engineering is conducted to translate raw 

observations into physically and statistically 

meaningful predictors of contaminant migration. 

Derived variables include hydraulic gradients, 

permeability proxies, lithological continuity indices, 

contaminant mass flux estimates, and spatio-temporal 

change metrics extracted from time-series remote 

sensing imagery. Dimensionality reduction techniques 

are applied where necessary to manage data 

redundancy while preserving dominant variance 

structures relevant to subsurface transport processes. 

The engineered feature set reflects both intrinsic site 

vulnerability and dynamic forcing factors such as 

land-use change, climatic variability, and remediation 

interventions. 

Predictive modeling is implemented using an 

ensemble machine learning strategy that integrates 

multiple algorithms, including random forest, gradient 

boosting, and support vector regression, to capture 

nonlinear interactions between hydrogeological 

controls and contaminant behavior. Model training is 

performed using stratified spatial–temporal sampling 

to avoid bias and overfitting, with cross-validation 

employed to evaluate generalization performance. 
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Ensemble averaging and weighted voting schemes are 

applied to improve prediction stability and reduce 

algorithm-specific uncertainty. The models are 

calibrated to predict contaminant concentration 

gradients, plume evolution trajectories, and 

preferential migration pathways across multiple 

subsurface layers. 

Spatial integration is achieved through coupling the 

trained predictive models with a GIS-based analytical 

environment. Model outputs are translated into 

probabilistic contamination pathway maps that 

visualize likely plume directions, depth-dependent 

risk zones, and areas of potential exposure. These 

outputs are dynamically updated as new sensor data 

become available, enabling near–real-time 

reassessment of subsurface risk conditions. The 

framework supports scenario-based analysis by 

simulating changes in contaminant behavior under 

alternative remediation strategies, hydrogeological 

assumptions, or environmental stressors. 

Uncertainty quantification is embedded throughout the 

analytical workflow using ensemble dispersion 

metrics, sensitivity analysis, and probabilistic output 

interpretation. This allows decision-makers to 

distinguish high-confidence predictions from areas 

requiring additional investigation or monitoring. The 

final stage of the methodology integrates predictive 

outputs into a decision-support interface that 

communicates actionable insights to remediation 

planners, regulators, and site managers. This interface 

supports adaptive remediation planning by linking 

predicted contamination pathways with remediation 

effectiveness indicators, monitoring priorities, and 

long-term risk management strategies. 

 

Figure 1: Flowchart of the study methodology 

2.2.  Problem Context and Environmental 

Significance 

Subsurface contamination represents a persistent 

environmental challenge that continues to undermine 

the safety, stability, and sustainability of natural and 

built ecosystems. The sources of such contamination 

are diverse and often deeply embedded in industrial, 

agricultural, and urban activities. Leaking 

underground storage tanks, refinery operations, 

pipeline failures, mining residues, landfills, chemical 

spills, and improper waste disposal practices remain 

among the most common contributors of hazardous 

substances into soil and groundwater systems. 

Agricultural fertilizers, pesticides, and livestock waste 

also introduce nitrates, phosphates, and microbial 

contaminants that can migrate far beyond their original 

application zones. In older industrial regions, legacy 

contamination from decades of unregulated disposal 

practices continues to pose significant threats, often 

compounded by incomplete historical records and 

limited site characterization (Buma & Livneh, 2017, 

Zhai, Yue & Zhang, 2016). These diverse sources 
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introduce contaminants with varying chemical 

properties, persistence levels, and environmental 

behaviours, making the identification and prediction 

of their pathways extraordinarily complex. 

Complicating the scenario further are the geological 

and hydrogeological complexities inherent in 

subsurface environments. Soil and rock layers exhibit 

heterogeneity in texture, porosity, permeability, and 

mineral composition, creating preferential flow 

channels and unpredictable retention zones. Aquifer 

systems are often dynamic, influenced by seasonal 

recharge patterns, groundwater extraction, surface 

infiltration, and climatic variations. Fractured bedrock 

terrains, karst landscapes, and heterogeneous alluvial 

deposits amplify the challenge, as contaminants may 

bypass monitoring points, migrate through unexpected 

conduits, or become trapped in low-permeability 

zones before remobilizing under altered hydraulic 

conditions. Even small spatial variations in soil 

structure or saturation can significantly alter 

contaminant transport rates and directions (Schultz & 

Engman, 2012, Sorooshian, et al., 2014). Because 

these subsurface conditions are rarely uniform or 

static, deterministic models that rely on simplified 

assumptions often fail to capture the nuanced 

interactions driving contaminant migration. 

The uncertainties associated with contaminant 

transport are further exacerbated by the 

physicochemical characteristics of the pollutants 

themselves. Organic solvents such as chlorinated 

hydrocarbons can form dense non-aqueous phase 

liquids (DNAPLs) that sink deeply into aquifers, while 

light non-aqueous phase liquids (LNAPLs) float and 

spread along the water table. Metals may adsorb to soil 

particles and later desorb under changes in pH or redox 

conditions, leading to delayed or secondary 

contamination plumes. Reactive species may degrade 

into equally or more harmful by-products, 

complicating predictions even further. Microbial 

activity, temperature variations, groundwater velocity 

changes, and chemical interactions between multiple 

contaminants add additional layers of uncertainty 

(Thakur, Singh & Ekanthalu, 2017). As a result, 

traditional prediction tools often underestimate the 

spatial extent of contamination, misidentify the 

direction of plume travel, or overlook contaminant 

persistence in subsurface reservoirs. 

These uncertainties have profound implications for 

public health, as groundwater remains a primary 

source of drinking water for millions of people 

worldwide. Contaminants such as benzene, 

trichloroethylene, arsenic, nitrates, and heavy metals 

pose significant health risks, including carcinogenic 

effects, neurological damage, reproductive issues, and 

developmental problems in children. When 

contaminants migrate undetected or unpredictably, 

they can contaminate wells, irrigation systems, and 

surface water bodies, exposing communities to long-

term health hazards. The latency period of many 

contamination-related illnesses means harmful 

exposures may go unnoticed for years, further 

reinforcing the need for accurate, predictive 

subsurface contamination models (Andres, et al., 

2018, Turczynowicz, Pisaniello & Williamson, 2012). 

Poorly understood or misrepresented contamination 

pathways can delay risk communication, hinder 

effective public-health interventions, and erode 

community trust in environmental management 

institutions. Figure 2 shows DPSIR framework and 

subsurface environmental problems presented by 

Jago-on, et al., 2009. 

Figure 2: DPSIR framework and subsurface 

environmental problems (Jago-on, et al., 2009). 

Regulatory frameworks governing contaminated sites 

demand precise assessments and accurate predictions 

of contamination pathways, making the limitations of 

conventional approaches a major compliance concern. 

Environmental Protection Agencies, water authorities, 

and international regulatory organisations increasingly 

require detailed hydrogeological characterisation, 

plume delineation, and predictive modelling as part of 

site investigations and remediation planning. 

Inaccurate predictions can result in non-compliance 
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with cleanup standards, penalties, project delays, or 

costly redesigns of remediation strategies. 

Furthermore, underestimating the extent of 

contamination may lead to insufficient remediation 

measures, leaving hazardous substances in place that 

continue to pose long-term risks (McAlary, Provoost 

& Dawson, 2010, Provoost, et al., 2013). Conversely, 

overestimating contamination zones may result in 

unnecessary expenditures, reduced economic viability 

of redevelopment projects, and inefficient allocation 

of public or private resources. As environmental 

regulations become more stringent and climate-related 

impacts intensify hydrological uncertainties, the need 

for robust predictive tools becomes even more urgent. 

Remediation outcomes are directly tied to the accuracy 

of subsurface contamination predictions. Successful 

remediation requires precise identification of 

contamination hotspots, accurate estimation of plume 

boundaries, and reliable predictions of how 

contaminants will move under both current and future 

conditions. Traditional site investigation methods 

boring logs, monitoring wells, pump tests, and 

laboratory analyses provide valuable but often sparse 

datasets that may inadequately represent the full 

spatial complexity of the subsurface. As a result, 

remediation strategies such as pump-and-treat 

systems, bioremediation, soil vapour extraction, or 

permeable reactive barriers may be poorly designed, 

improperly positioned, or insufficiently scaled. 

Remediation failures not only prolong contamination 

but also increase operational costs, reduce stakeholder 

confidence, and complicate long-term site 

management (Roghani, 2018, Wang, Unger & Parker, 

2014). 

The integration of data-driven frameworks into 

contamination pathway prediction directly responds to 

these limitations by offering more advanced, adaptive, 

and comprehensive analytical capabilities. Data-

driven approaches can fuse multiple datasets 

geophysical surveys, remote sensing, sensor-based 

monitoring, historical records, geochemical profiles, 

and hydraulic measurements to create a more holistic 

understanding of subsurface conditions. Machine 

learning algorithms can reveal hidden patterns in 

contaminant behaviour, identify key transport drivers, 

and detect anomalies that traditional models might 

miss (Derycke, et al., 2018, Kulawiak & Lubniewski, 

2014). Geospatial analytics enable high-resolution 

mapping and probabilistic plume delineation, 

improving both the precision and reliability of 

predictions. By incorporating temporal datasets, data-

driven models can also simulate contaminant 

migration under varying conditions, capturing the 

dynamic nature of subsurface environments. Figure 3 

shows Conceptual site model of Pb contamination in 

Klity Creek showing Pb sources, five exposure 

pathways (fish ingestion, drinking water, soil 

ingestion and dermal contact, edible plant ingestion, 

and inhalation), fate and transport mechanisms, and 

human as well as ecological receptors presented by 

Phenrat, et al., 2016. 

 

Figure 3: Conceptual site model of Pb contamination 

in Klity Creek showing Pb sources, five exposure 

pathways (fish ingestion, drinking water, soil 

ingestion and dermal contact, edible plant ingestion, 

and inhalation), fate and transport mechanisms, and 

human as well as ecological receptors (Phenrat, et al., 

2016). 

Moreover, data-driven frameworks significantly 

improve uncertainty quantification, enabling decision-

makers to understand and plan for different 

contamination scenarios. Probabilistic forecasts help 

identify worst-case pathways, support remediation 

contingency planning, and strengthen regulatory 

submissions. Enhanced interpretability and 

transparency of data-driven outputs also facilitate 

better communication with stakeholders, regulators, 

and affected communities, promoting trust and 

supporting informed decision-making (Hoek, Beelen 

& Brunekreef, 2011, Levy, 2013). 

The environmental significance of adopting a data-

driven predictive framework is therefore substantial. 

By reducing uncertainty, enhancing accuracy, and 
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enabling more proactive interventions, these models 

contribute to the protection of water resources, the 

safeguarding of ecosystems, and the prevention of 

human exposure to dangerous contaminants. They 

support more efficient remediation investments, 

reduce long-term environmental liabilities, and foster 

sustainable land management practices. In an era 

marked by increasing environmental pressure, 

expanding industrial activities, and heightened 

regulatory expectations, data-driven frameworks offer 

a transformative pathway toward more effective 

subsurface contamination management and long-term 

environmental resilience (Bowen & Wittneben, 2011, 

Schaltegger & Csutora, 2012). 

2.3.  Data Acquisition and Characterization 

Data acquisition and characterization form the 

foundational pillar of any data-driven framework 

designed to predict subsurface contamination 

pathways, as the quality, diversity, and 

representativeness of the data directly influence 

modelling accuracy and remediation outcomes. 

Subsurface environments are inherently complex, 

governed by interactions among geological structures, 

hydrological gradients, chemical processes, and 

anthropogenic disturbances. Capturing this 

complexity requires a multifaceted approach to data 

gathering that integrates hydrogeological datasets, soil 

geochemical profiles, geospatial mapping, historical 

monitoring records, real-time sensor inputs, and 

laboratory test results (Maas, Schaltegger & Crutzen, 

2016, Tang & Luo, 2014). Each category of data offers 

unique insights into contaminant behaviour, transport 

dynamics, and environmental conditions, and together 

they create a comprehensive information ecosystem 

capable of supporting sophisticated predictive 

analytics. 

Hydrogeological datasets are among the most essential 

components of subsurface contamination analysis, as 

groundwater movement often dictates the direction, 

velocity, and dispersion of contaminants. These 

datasets typically include measurements of hydraulic 

conductivity, aquifer thickness, groundwater 

elevation, flow direction, and recharge rates. Pump 

tests, slug tests, and hydraulic head measurements 

provide quantitative indicators of how water and 

consequently contaminants move through porous 

media. Spatial variations in hydraulic gradients reveal 

preferential flow paths that may accelerate 

contaminant migration or redirect plumes 

unexpectedly. Understanding these parameters is 

crucial because even minor shifts in groundwater flow 

can significantly impact plume evolution (Ascui, 

2014, Hartmann, Perego & Young, 2013). 

Furthermore, hydrogeological data enable the 

calibration of predictive models by defining boundary 

conditions and governing flow equations, reducing 

uncertainty in model simulations. 

Complementing hydrogeological data is soil 

geochemistry, which provides detailed information on 

the chemical composition, mineralogy, and physical 

properties of subsurface materials. Soil pH, organic 

content, clay fraction, cation-exchange capacity, and 

mineral constituents influence contaminant 

adsorption, desorption, retention, and degradation. For 

instance, hydrophobic organic contaminants tend to 

sorb strongly to soils rich in organic matter, while 

metals may form complexes with mineral surfaces 

under specific geochemical conditions. These 

processes determine whether contaminants remain 

immobile or become mobilized under fluctuating 

environmental conditions (Ascui & Lovell, 2012, 

Steininger, et al., 2016). Soil geochemical 

characterization is especially important for predicting 

the behaviour of complex contaminants such as 

DNAPLs, LNAPLs, or reactive species whose fate can 

change dramatically with shifts in redox conditions, 

moisture content, or microbial activity. By integrating 

these geochemical attributes into data-driven models, 

predictions become more representative of real-world 

interactions, improving the reliability of pathway 

forecasting. 

Geospatial mapping plays a critical role in visualizing 

and contextualizing subsurface data, enabling the 

interpretation of spatial relationships that influence 

contamination patterns. Geographic Information 

Systems (GIS) allow the integration of diverse datasets 

into layered spatial models that highlight geological 

formations, land use, topographical gradients, 

drainage networks, and historical industrial activity. 

Remote sensing data, including satellite imagery and 

aerial surveys, can reveal surface disturbances, 

vegetation stress patterns, and potential contamination 

sources that may not be immediately evident from 
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ground-based observations (Burritt, Schaltegger & 

Zvezdov, 2011, Gibassier & Schaltegger, 2015). 

Geophysical mapping techniques such as electrical 

resistivity tomography, ground-penetrating radar, and 

electromagnetic surveys provide non-invasive insights 

into subsurface structures, identifying fractures, voids, 

stratigraphic boundaries, and anomalies that could act 

as conduits or barriers to contaminant transport. These 

geospatial datasets enhance model inputs by 

improving spatial resolution and reducing the 

uncertainty associated with interpolation between 

sampling points. Figure 4 shows figure of two 

conceptual plumes caused by DNAPL entry into 

fractured rock presented by Parker, Cherry & 

Chapman, 2012. 

 

Figure 4: Two conceptual plumes caused by DNAPL 

entry into fractured rock (Parker, Cherry & Chapman, 

2012). 

Historical monitoring records are indispensable in 

understanding long-term contamination trends and 

validating predictive models. Many contaminated sites 

have decades of data from groundwater sampling, soil 

tests, well logs, and site investigations conducted 

during previous remediation efforts. These records 

document contaminant concentrations, plume shapes, 

seasonal fluctuations, and responses to remediation 

activities. By reconstructing historical plume 

dynamics, analysts can identify recurring migration 

patterns, detect plume stability or expansion, and 

determine whether contaminants are degrading, 

dissipating, or redistributing (Barzegar, et al., 2018, 

Karandish, Darzi-Naftchali & Asgari, 2017). 

Historical datasets also help differentiate between 

active contamination sources and residual impacts 

from past events. Incorporating these temporal 

datasets into data-driven models enhances their ability 

to simulate future scenarios based on observed trends, 

increasing predictive confidence and supporting 

regulatory reporting requirements. 

Modern remediation projects increasingly rely on 

sensor data to provide continuous, real-time insights 

into subsurface conditions. Advanced sensor 

technologies measure groundwater levels, moisture 

content, temperature, electrical conductivity, and in 

some cases, specific contaminant concentrations. 

These sensors, often installed in monitoring wells or 

embedded in soil matrices, transmit data through 

automated networks, enabling remote monitoring and 

dynamic model updates. Real-time data capture 

transient events such as rainfall-driven infiltration, 

pumping-induced hydraulic shifts, or sudden 

contaminant releases that would otherwise remain 

undetected with periodic sampling (Park, et al., 2016, 

Ransom, et al., 2017). The integration of sensor data 

strengthens the responsiveness of predictive models, 

allowing them to adjust forecasts based on current 

conditions and enhancing the capacity for early 

warning detection of plume acceleration or deviation. 

Laboratory test results provide high-precision 

measurements that anchor predictive modelling in 

scientific accuracy. Laboratory analyses quantify 

concentrations of contaminants, evaluate chemical 

speciation, and measure reaction rates under 

controlled conditions. Tests such as grain-size 

distribution, permeability measurements, sorption 

isotherms, and batch degradation studies help 

characterize the fundamental physical and chemical 

interactions that govern contaminant behaviour. 

Laboratory microcosms, for example, can be used to 

simulate biodegradation potential under varying 

environmental conditions, enabling analysts to assess 

whether natural attenuation is likely to contribute 

significantly to remediation (Naghibi, Pourghasemi & 

Dixon, 2016, Rodriguez-Galiano, et al., 2014). 

Furthermore, laboratory-derived parameters are 

essential inputs for both physics-based and machine 

learning models, ensuring that predictions reflect 

empirically validated relationships rather than abstract 

approximations. 
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The integration of these diverse datasets is not without 

challenges. Subsurface data are often incomplete, 

spatially irregular, or collected using different 

methodologies, resulting in inconsistencies that 

complicate model calibration. Data gaps may occur in 

regions where drilling is impractical, where historical 

records are unavailable, or where sensors fail to 

capture transient changes. Additionally, variability in 

sampling frequency and measurement precision can 

introduce bias if not properly accounted for. Thus, 

preprocessing methods such as interpolation, 

normalization, uncertainty quantification, and data 

fusion become essential steps in preparing the dataset 

for predictive modelling (Liakos, et al., 2018, Singh, 

Gupta & Mohan, 2014). Machine learning techniques 

can help mitigate some of these challenges by 

identifying patterns within incomplete datasets, 

estimating missing values, and detecting anomalies 

indicative of measurement errors or unexpected 

environmental events. 

Despite these challenges, comprehensive data 

acquisition and characterization significantly enhance 

the predictive capability of subsurface contamination 

models. The richness of multi-source datasets allows 

data-driven frameworks to capture the heterogeneity, 

nonlinearity, and dynamic behaviour of contamination 

processes that traditional models often miss. By 

leveraging high-resolution hydrogeological data, 

detailed geochemical profiles, robust geospatial 

mappings, long-term monitoring records, real-time 

sensor streams, and laboratory analyses, predictive 

models become more adaptive, accurate, and relevant 

to real-world remediation demands. Environmental 

managers can make more informed decisions, 

regulators gain access to more defensible assessments, 

and communities benefit from improved protection 

against subsurface contamination risks (Ahmed, 2017, 

Karpatne, et al., 2018). 

Ultimately, the strength of any data-driven framework 

lies in the quality and depth of its foundational data. 

By embracing comprehensive and rigorous data 

acquisition strategies, remediation practitioners can 

overcome many of the uncertainties that have 

historically hindered contamination prediction. This 

holistic approach not only improves scientific 

understanding of subsurface systems but also enables 

more effective and proactive remediation planning an 

essential step toward achieving long-term 

environmental sustainability and resilience. 

2.4.  Analytical and Machine Learning 

Techniques 

Analytical and machine learning techniques form the 

computational core of a data-driven framework for 

predicting subsurface contamination pathways, 

enabling the integration of complex datasets and the 

modelling of contaminant behaviour in ways that 

exceed the capabilities of traditional approaches. 

Subsurface systems are governed by nonlinear 

interactions among geological structures, 

hydrogeological dynamics, chemical reactions, and 

anthropogenic influences (Liakos, et al., 2018, Singh, 

Gupta & Mohan, 2014). These factors introduce 

significant uncertainty and spatial variability, making 

contaminant transport difficult to predict using 

deterministic or empirical models alone. Machine 

learning and advanced computational analytics allow 

researchers and remediation practitioners to uncover 

hidden patterns, quantify uncertainty, and simulate 

contaminant migration with greater precision. Several 

classes of computational techniques including 

supervised learning, unsupervised clustering, physics-

informed models, geospatial analytics, and time-series 

prediction play distinct but complementary roles in 

capturing the multidimensional behaviour of 

subsurface contamination. 

Supervised learning algorithms are fundamental tools 

for predicting contaminant concentrations, plume 

extents, and transport pathways based on labelled 

datasets. In these models, historical or experimentally 

measured contaminant behaviours are used to train 

algorithms to recognize relationships between input 

variables and output responses. Techniques such as 

random forests, support vector machines, gradient 

boosting, and artificial neural networks can 

incorporate large numbers of predictors, including soil 

properties, groundwater velocity, hydraulic gradients, 

and geochemical indicators (Ahmed, 2017, Karpatne, 

et al., 2018). These models are particularly effective 

when complex nonlinearities govern contaminant 

movement. For instance, neural networks can 

approximate intricate functional relationships that 

describe adsorption-desorption cycles or multiphase 

fluid interactions. Supervised learning is especially 
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powerful for site-specific forecasting where historical 

monitoring data provide a strong basis for model 

calibration. Once trained, these models can generate 

rapid predictions of plume trajectories or hotspot 

locations, supporting timely decision-making in 

remediation design and risk mitigation. However, 

supervised learning relies on the availability of 

labelled datasets; when such data are limited or 

unevenly distributed, alternative or complementary 

methods become necessary. 

Unsupervised clustering offers a valuable approach for 

identifying patterns and structural behaviours within 

unlabelled subsurface datasets. Techniques such as k-

means clustering, hierarchical clustering, and density-

based spatial clustering of applications with noise 

(DBSCAN) can group areas of similar 

hydrogeological or geochemical properties, revealing 

zones that may favour specific contaminant 

behaviours. Clustering methods also help detect 

anomalies, such as unexpected contaminant 

concentration spikes or irregular flow patterns, which 

may indicate new sources, preferential pathways, or 

sampling errors (Lemming, 2010, Wang, et al., 2017). 

In the context of plume delineation, unsupervised 

algorithms can automatically segment spatial datasets 

into regions representing high, moderate, or low 

contaminant levels, improving the efficiency of 

mapping and monitoring efforts. These unsupervised 

insights enhance the robustness of supervised models 

by enabling better feature engineering, reducing 

dimensionality, and improving data quality through 

anomaly detection. 

Physics-informed models represent another vital 

advancement in computational techniques for 

subsurface contamination prediction. These methods 

integrate machine learning with physical laws 

governing groundwater flow and contaminant 

transport, such as Darcy’s law, advection-dispersion 

equations, and mass balance constraints. Physics-

informed neural networks (PINNs) enforce these 

governing principles within the learning architecture, 

ensuring that model outputs are not only data-driven 

but also consistent with hydrological realities. This 

hybrid modelling approach addresses the limitations 

of purely statistical learning, which may produce 

accurate predictions within the training domain but 

generate unrealistic behaviours under extrapolation 

(An, et al., 2016, Mgbeahuruike, 2018). By embedding 

physics into the computational framework, researchers 

can simulate contamination pathways even in areas 

with sparse data, reducing uncertainty and improving 

model generalization. PINNs are especially useful in 

scenarios involving multiphase flow, reactive 

transport, or heterogeneous media where empirical 

data alone cannot fully characterize contaminant 

dynamics. 

Geospatial analytics provides the spatial intelligence 

required to understand how contaminants migrate 

across complex terrains. Geographic Information 

Systems (GIS), spatial interpolation methods, and 

spatial machine learning algorithms allow the 

integration of multilayer datasets including geological 

maps, soil classifications, hydrological networks, and 

historical contamination footprints into high-

resolution spatial models. Techniques such as kriging, 

inverse distance weighting, and neural-network-based 

spatial prediction help estimate contaminant 

concentrations at unsampled locations, improving 

spatial continuity and reducing uncertainty. Spatial 

autocorrelation measures like Moran’s I and Geary’s 

C reveal patterns of plume clustering or dispersion, 

offering insights into how contaminants respond to 

subsurface structures (Hardie & McKinley, 2014, 

Williamson, 2011). More advanced geospatial 

approaches, including spatial decision-support models 

and geostatistical simulations, enable practitioners to 

evaluate multiple contamination scenarios and select 

optimal remediation strategies. Geospatial analytics is 

also crucial for integrating remote-sensing data, 

enabling the detection of surface indicators of 

subsurface contamination such as vegetation stress or 

soil anomalies. 

Time-series prediction techniques add a temporal 

dimension to contaminant pathway modelling, 

enabling the forecasting of plume evolution under 

changing environmental conditions. Historical 

monitoring records such as groundwater levels, 

seasonal recharge rates, and contaminant 

concentration trends form the basis for predictive 

models that anticipate future plume behaviour. 

Machine learning algorithms such as long short-term 

memory (LSTM) networks, autoregressive integrated 

moving average (ARIMA) models, and temporal 

convolutional networks (TCNs) can analyse sequential 
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data to predict fluctuations in contamination levels or 

identify early warning signals of plume migration 

acceleration. Time-series models are particularly 

valuable for capturing the effects of climatic events, 

land-use changes, pumping activities, or remediation 

interventions that alter hydraulic conditions 

(Cappuyns & Kessen, 2014, Williamson, et al., 2011). 

They also allow continuous model updating as new 

data become available, making predictions more 

adaptive and reflective of real-time environmental 

dynamics. 

The integration of these computational techniques 

enhances predictive accuracy and reduces the 

uncertainties that traditionally plague subsurface 

contamination modelling. By combining supervised 

models for targeted prediction, unsupervised methods 

for pattern recognition, physics-informed models for 

constraint-based learning, geospatial analytics for 

spatial interpretation, and time-series forecasting for 

temporal insights, a comprehensive framework 

emerges that can accommodate the inherent 

complexity of subsurface environments. This 

integrated computational approach enables multi-

source data fusion, allowing diverse datasets such as 

hydrogeological measurements, soil geochemistry, 

geophysical surveys, laboratory analyses, and real-

time sensor outputs to inform a unified predictive 

model (Mitchell, 2012, Sweeney & Kabouris, 2017). 

Machine learning enhances the ability to detect 

nonlinear interactions, while physics-based 

constraints ensure realism and scientific validity. 

Geospatial and temporal techniques add holistic 

dimensions that reflect the true variability of 

environmental systems. 

Moreover, advanced analytics and machine learning 

facilitate uncertainty quantification, an essential 

component of credible contamination pathway 

prediction. Techniques such as Monte Carlo 

simulation, Bayesian inference, and ensemble 

modelling enable analysts to evaluate model 

reliability, identify high-risk zones, and support 

decision-making under uncertainty. These methods 

provide probabilistic predictions that reflect not only 

the most likely plume behaviour but also the range of 

possible outcomes, improving transparency in 

regulatory reporting and remediation planning 

(Cheng, et al., 2011, Herat & Agamuthu, 2012). 

As computational capacity and data availability 

continue to expand, machine learning models can be 

continuously refined, incorporating emerging data 

streams from remote sensing platforms, autonomous 

monitoring systems, and advanced laboratory 

techniques. This adaptability is crucial, as subsurface 

contamination is rarely static; pathways evolve with 

shifts in groundwater dynamics, climatic patterns, and 

human activities. Data-driven computational methods 

thus enable dynamic modelling frameworks that 

remain relevant throughout the lifecycle of a 

remediation project, from initial site assessment to 

long-term monitoring (Boriana, 2017, Hou & Al-

Tabbaa, 2014). 

Ultimately, the use of analytical and machine learning 

techniques in subsurface contamination pathway 

prediction represents a transformative shift in 

environmental modelling. These techniques empower 

practitioners to overcome the limitations of traditional 

deterministic models, enabling deeper insights into 

complex environmental behaviours, improving 

predictive accuracy, and enhancing the effectiveness 

of remediation strategies. By integrating scientific 

principles with advanced computation, data-driven 

frameworks provide a powerful foundation for 

protecting groundwater resources, ensuring regulatory 

compliance, and promoting sustainable environmental 

management in increasingly complex remediation 

landscapes. 

2.5.  Framework Architecture for Predicting 

Contamination Pathways 

The architecture of a data-driven framework for 

predicting subsurface contamination pathways in 

complex remediation projects must be designed to 

integrate diverse datasets, sophisticated modelling 

techniques, and scientifically grounded simulation 

tools into a unified system capable of producing 

accurate and actionable predictions. This framework 

begins with a robust data preprocessing pipeline, 

progresses into advanced model development and 

calibration, incorporates seamless coupling with 

hydrogeological simulations, and culminates in 

contamination pathway estimation and risk-zone 

delineation. Each component plays a crucial role in 

capturing the multifaceted dynamics of contaminant 

migration, addressing uncertainties, and supporting 
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effective remediation decision-making (Ferdinand & 

Yu, 2016, Koop & van Leeuwen, 2017). 

Data preprocessing forms the foundation of the 

framework, ensuring that raw datasets from various 

sources are cleaned, standardized, and structured for 

analysis. Subsurface datasets such as soil 

geochemistry, hydraulic measurements, geospatial 

maps, laboratory test results, and sensor data often 

vary widely in temporal frequency, spatial resolution, 

and measurement units. Many datasets contain 

missing values, noise, or inconsistencies arising from 

sampling errors, instrument limitations, or incomplete 

historical records. Preprocessing therefore includes 

data cleaning techniques such as noise filtering, 

interpolation of missing values, normalization of 

variable scales, and transformation of categorical 

inputs into quantitative features. Spatial datasets are 

georeferenced and harmonized to ensure alignment 

across mapping layers, while temporal datasets are 

synchronized to capture the sequence of 

hydrogeological events that influence contaminant 

transport (Jayasooriya, 2016, Sayles, 2017). Feature 

engineering may also be applied to extract meaningful 

indicators such as hydraulic gradients, soil moisture 

indices, or contaminant decay coefficients, enabling 

machine learning models to capture complex 

interactions. The objective of preprocessing is to build 

a coherent dataset that accurately reflects subsurface 

conditions and supports reliable model development. 

Once data preprocessing is complete, the framework 

advances to model development, where analytical and 

machine learning techniques are deployed to learn 

contaminant behaviour from the input data. Model 

development typically involves selecting appropriate 

algorithms such as neural networks, random forests, 

gradient boosting machines, or physics-informed 

models based on the characteristics of the 

contamination problem. For example, neural networks 

may be suited to capturing nonlinear interactions 

among geochemical and hydrogeological variables, 

while physics-informed neural networks integrate 

governing fluid-flow equations directly into the 

learning process (Kato, 2010, Meerow & Newell, 

2017). In developing these models, training datasets 

are used to calibrate algorithm parameters, while 

validation datasets ensure that predictions generalize 

to unseen conditions. Hyperparameter tuning methods, 

including grid search, Bayesian optimization, or 

evolutionary algorithms, refine model performance by 

identifying optimal configurations for depth, learning 

rates, regularization strategies, or decision splits. 

Throughout this process, cross-validation techniques 

help reduce overfitting and improve the robustness of 

model outputs. The model development stage is 

iterative, involving repeated cycles of refinement, 

performance evaluation, and error analysis to align the 

predictive model with observed contaminant patterns. 

A key strength of the proposed framework lies in its 

integration of data-driven models with 

hydrogeological simulations. Traditional 

hydrogeological models, based on Darcy’s law and 

advection–dispersion principles, offer established 

scientific grounding and can simulate groundwater 

flow and contaminant movement under controlled 

assumptions. However, they often struggle to 

accommodate the full complexity of real-world 

subsurface conditions. Coupling these simulations 

with machine learning models enables the framework 

to benefit from both empirical and physics-based 

perspectives (Furniss, 2011, Handmer, et al., 2012). In 

this integrated architecture, hydrogeological 

simulations provide boundary conditions, hydraulic 

heads, aquifer properties, and flow velocities that 

serve as inputs or constraints for data-driven models. 

Conversely, machine learning outputs including 

predicted contaminant concentrations, mobility 

indicators, or pathway probabilities can refine or 

adjust simulation parameters, improving the realism of 

physics-based modelling. This bidirectional coupling 

allows the system to generate hybrid predictions that 

are grounded in scientific principles while remaining 

sensitive to empirical patterns not captured by 

conventional models. 

Pathway estimation represents one of the most critical 

outcomes of the integrated framework. Once the 

models have been developed and coupled with 

hydrogeological simulations, the system predicts 

contamination pathways by analysing the interactions 

between contaminant properties, soil characteristics, 

flow dynamics, and environmental conditions. These 

predictions often take the form of spatially explicit 

plume migration maps that trace the expected 

direction, speed, and extent of contaminant travel. 

Machine learning models may generate probability 
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surfaces indicating the likelihood of contaminant 

presence across the subsurface, enabling 

environmental managers to identify potential 

preferential flow paths, plume divergence zones, or 

stagnation points. Time-series prediction components 

capture temporal variations, projecting how pathways 

may shift under seasonal recharge, pumping activities, 

or remediation interventions (Hubbard, et al., 2018, 

Singh, van Werkhoven & Wagener, 2014). 

Incorporating uncertainty quantification adds depth to 

pathway estimation, allowing analysts to visualize 

confidence intervals or worst-case scenarios and plan 

accordingly. This probabilistic perspective is 

particularly useful in complex remediation 

environments where geological heterogeneity and 

incomplete data introduce significant uncertainties. 

Risk-zone delineation is the culminating step of the 

framework, translating pathway predictions into 

actionable insights for remediation planning, 

regulatory compliance, and risk communication. Risk 

zones represent spatial areas categorized according to 

contamination likelihood, potential exposure severity, 

or environmental vulnerability. These zones often 

classified as high-risk, moderate-risk, or low-risk are 

delineated by combining predicted contaminant 

concentrations, plume trajectories, groundwater usage 

patterns, proximity to receptors, and regulatory 

thresholds. Geospatial analytics play a central role in 

converting model outputs into risk-zone maps that 

align with real-world coordinates and site boundaries 

(Field, 2012, McMillan, et al., 2016). Environmental 

risk indices may also be calculated to quantify hazards 

to drinking water sources, ecosystems, infrastructure, 

or human populations. Such delineation supports 

strategic decision-making by identifying priority 

remediation areas, informing the placement of 

monitoring wells, guiding control measures, and 

optimizing the allocation of financial and technical 

resources. Risk-zone mapping further enhances 

transparency by providing stakeholders such as 

regulators, community groups, and remediation 

contractors with clear visualizations of contamination 

risks (Edwards, et al., 2012, Green, 2016). 

The integrated framework architecture also 

incorporates a feedback mechanism that enables 

continuous improvement. As new monitoring data 

become available from field measurements, sensors, 

or laboratory analyses they are fed back into the 

preprocessing pipeline, allowing the models to be 

retrained and refined. This dynamic updating ensures 

that predictions remain accurate and reflect evolving 

subsurface conditions. The iterative feedback loop is 

particularly important for long-term remediation 

projects, where environmental conditions may change 

significantly over time due to climatic events, land-use 

changes, or engineered interventions. The adaptability 

of the framework allows it to remain relevant and 

reliable throughout the lifecycle of the remediation 

process (Viviroli, et al., 2011, Watts, et al., 2015). 

Another essential component of the framework is 

model interpretability and transparency. While 

machine learning models can produce highly accurate 

predictions, their complexity can sometimes hinder 

understanding of the underlying processes. To address 

this, interpretability tools such as feature importance 

scores, SHAP values, or sensitivity analyses can be 

incorporated to reveal which variables most influence 

contaminant pathways. This not only aids scientific 

understanding but also increases confidence among 

regulators and practitioners who rely on the model’s 

outputs for decision-making. Transparent reporting of 

model assumptions, uncertainties, and limitations 

further enhances the credibility of the framework 

(Nelitz, Boardley & Smith, 2013, Perra, et al., 2018). 

Overall, the proposed integrated framework 

architecture unites data preprocessing, advanced 

model development, hydrogeological simulation 

coupling, pathway estimation, and risk-zone 

delineation into a cohesive system capable of 

addressing the complexity of subsurface 

contamination. By combining machine learning with 

physics-based modelling and geospatial analysis, the 

framework overcomes the limitations of traditional 

methods and provides deeper insights into 

contaminant behaviour. Its dynamic, data-driven 

nature ensures adaptability and continuous 

improvement, while its focus on risk communication 

and decision support enhances practical applicability 

(Leibowitz, et al., 2014, Ribeiro Neto, et al., 2014). As 

contaminated sites grow in number and complexity, 

such comprehensive frameworks are essential for 

protecting groundwater resources, ensuring public 

health, and supporting sustainable environmental 

remediation practices. 
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2.6.  Uncertainty Quantification and Model 

Validation 

Uncertainty quantification and model validation are 

essential components of a data-driven framework for 

predicting subsurface contamination pathways, as they 

ensure that model outputs are scientifically credible, 

operationally reliable, and suitable for supporting 

high-stakes remediation decisions. Subsurface 

environments are inherently complex, characterized 

by heterogeneous geological formations, variable 

hydrogeological conditions, evolving contaminant 

properties, and incomplete or noisy datasets. These 

complexities introduce different types of uncertainty 

ranging from measurement errors and spatial gaps to 

model structure limitations and parameter variability 

that can significantly influence the accuracy of 

contamination pathway predictions (Hanson, et al., 

2012, Wagesho, 2014). A robust framework must 

therefore incorporate systematic approaches for 

assessing model robustness, evaluating prediction 

confidence, performing sensitivity analyses, and 

validating results against real-world observations and 

historical plume behaviour. By doing so, it strengthens 

the trustworthiness of the predictive system and 

provides decision-makers with the information 

necessary to manage risk effectively. 

Model robustness assessment begins with identifying 

sources of uncertainty within the dataset and the 

modelling process. In subsurface contamination 

modelling, uncertainties may arise from sparse 

monitoring well distributions, irregular sampling 

intervals, sensor inaccuracies, incomplete geological 

maps, laboratory measurement variability, or 

simplifying assumptions in hydrogeological 

simulations. Data-driven models themselves may 

introduce uncertainties through algorithm selection, 

hyperparameter tuning, and the sensitivity of 

predictions to training data variability. To address 

these issues, ensemble modelling techniques are often 

deployed. Ensemble approaches, such as bagging, 

boosting, or random forests, generate multiple models 

using variations of the dataset or algorithmic 

parameters and aggregate the results to produce a more 

stable and robust prediction (Langat, Kumar & Koech, 

2017, Nashwan, et al., 2018). This reduces the 

influence of outliers and compensates for weaknesses 

in individual models. Variational methods and dropout 

sampling in neural networks also provide probabilistic 

interpretations, allowing the model to quantify 

uncertainty in its predictions. Such robustness 

assessments help determine whether the model can 

generalize beyond training conditions and perform 

reliably under different contamination scenarios. 

Evaluating prediction confidence is another critical 

dimension of uncertainty quantification. Confidence 

assessment involves estimating the likelihood that 

predicted contamination pathways or plume extents 

fall within acceptable error margins given the 

available data and model assumptions. Probabilistic 

modelling techniques, including Bayesian inference, 

Gaussian processes, and Monte Carlo simulations, are 

frequently employed to estimate prediction 

distributions rather than single deterministic outputs. 

These techniques generate confidence intervals or 

probability density maps that show the range of 

possible contamination pathways and highlight areas 

with high or low prediction certainty (Gober & 

Kirkwood, 2010, Mark, et al., 2010). For example, 

Bayesian models treat parameters as probability 

distributions rather than fixed values, updating their 

estimates as new data become available. By doing so, 

they capture the evolving nature of subsurface 

conditions and provide decision-makers with 

transparent information about prediction reliability. 

Monte Carlo simulations allow the model to run 

thousands of iterations using random variations of key 

parameters such as hydraulic conductivity, porosity, 

source concentration, or degradation rates, thereby 

revealing how parameter variability influences the 

predicted plume. These confidence measures help 

remediation engineers plan for best-case and worst-

case scenarios, improving contingency planning and 

risk communication. 

Sensitivity analysis plays a vital role in understanding 

how different input variables influence model outputs. 

Because subsurface contamination pathways depend 

on a complex interplay of geological, hydrological, 

and chemical factors, identifying the most influential 

parameters helps refine both modelling accuracy and 

field investigation priorities. Sensitivity analysis 

methods such as local sensitivity (one-factor-at-a-

time) and global sensitivity approaches (Sobol indices, 

Morris screening) quantify how changes in specific 

inputs affect the variation in predicted outcomes. For 
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instance, a sensitivity analysis may reveal that 

hydraulic conductivity variations significantly alter 

plume migration directions, while soil organic content 

plays a lesser role in certain contexts. Such insights 

guide field teams in prioritizing the collection of high-

impact data, optimizing the placement of monitoring 

wells, and allocating resources toward reducing 

critical uncertainties (Essaid, Bekins & Cozzarelli, 

2015, Kobus, Barczewski & Koschitzky, 2012). 

Sensitivity analysis also evaluates model stability, 

determining whether slight changes in environmental 

conditions or dataset characteristics lead to 

disproportionately large shifts in predictions. Stable 

models yield consistent results even when faced with 

minor variations, while unstable models require 

further refinement or restructuring. By systematically 

identifying the drivers of prediction variability, 

sensitivity analysis enhances both model development 

and interpretability. 

Model validation is arguably the most important step 

in ensuring that data-driven contamination predictions 

reflect real-world conditions. Validation involves 

comparing model outputs with observed field data, 

historical plume behaviour, or independent datasets 

that were not used during model training. This step 

confirms whether the framework can accurately 

reproduce known contaminant migration patterns and 

reliably forecast future conditions. Field-based 

validation may include groundwater sampling, 

borehole logs, soil core analyses, geophysical surveys, 

or sensor-based measurements (Kuppusamy, et al., 

2016, Majone, et al., 2015). Model predictions of 

plume boundaries, contaminant concentrations, or 

migration directions are compared with observed 

measurements using statistical metrics such as root 

mean square error (RMSE), Nash–Sutcliffe efficiency, 

R-squared values, or spatial similarity indices. 

Discrepancies between predictions and observations 

highlight areas where the model may require 

recalibration, additional data inputs, or structural 

refinements. 

Historical plume behaviour offers another important 

validation avenue. Many contaminated sites have 

long-term monitoring records documenting how 

contamination spread over years or decades. By 

simulating past contamination dynamics and 

comparing outputs with recorded plume shapes, 

researchers can assess whether the model captures the 

temporal evolution of contamination. If the model 

successfully reconstructs historical patterns, 

confidence in its predictive power for future scenarios 

increases. Conversely, if the model fails to align with 

historical behaviours, this signals gaps in the data 

inputs, missing physical processes, or inadequacies in 

the modelling architecture. Time–lag validation, in 

which models are tested on data from subsequent 

monitoring periods, further strengthens validation by 

demonstrating whether predictions remain accurate as 

conditions evolve (Yaron, Dror & Berkowitz, 2012, 

Zeidan, 2017). 

Cross-validation techniques are essential for model 

generalization. K-fold cross-validation, leave-one-out 

validation, and spatial cross-validation allow the 

model to be tested on multiple partitions of the dataset 

to ensure it performs consistently across different 

spatial and temporal subsets. Spatial cross-validation 

is particularly important for subsurface modelling 

because spatial autocorrelation can artificially inflate 

performance metrics if training and validation datasets 

are too similar. By separating data into geographically 

distinct areas, spatial cross-validation ensures that the 

model can predict contamination dynamics in 

unmonitored regions, a critical requirement for 

practical application (Binley, et al., 2015, Francisca, et 

al., 2012). 

The final aspect of uncertainty quantification and 

validation involves integrating results into decision-

making tools. Visualization of uncertainty is essential 

for communicating results to regulators, stakeholders, 

and remediation engineers. Probabilistic plume maps, 

uncertainty heatmaps, and confidence-band time-

series plots help illustrate where model predictions are 

strong and where caution is warranted. Decision-

support systems may incorporate uncertainty 

thresholds to trigger alerts, guide monitoring efforts, 

or prioritize remediation actions. For example, a high-

uncertainty zone may prompt additional field 

sampling, while a high-confidence plume prediction 

may justify immediate intervention measures such as 

barrier installation or groundwater extraction 

(Filippini, 2015, Mallants, et al., 2010). 

Ultimately, uncertainty quantification and model 

validation strengthen the scientific, regulatory, and 
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operational integrity of the contamination prediction 

framework. By identifying uncertainties, evaluating 

prediction confidence, understanding sensitivity to 

key variables, and validating results against real-world 

behaviour, the framework becomes more transparent, 

reliable, and adaptable. These processes not only 

enhance technical performance but also foster trust 

among stakeholders, ensuring that remediation 

decisions are grounded in robust evidence. As 

subsurface contamination challenges grow more 

complex and environmental expectations intensify, 

rigorous uncertainty quantification and validation 

remain essential pillars of responsible and effective 

environmental modelling. 

2.7.  Case Studies and Practical Applications 

Case studies and practical applications of data-driven 

frameworks for predicting subsurface contamination 

pathways provide essential insights into how these 

advanced systems perform under real-world 

conditions and demonstrate their superiority over 

conventional deterministic models. By analyzing 

actual and simulated remediation projects, it becomes 

clear that data-driven approaches not only enhance 

predictive accuracy but also support more informed 

decision-making, resource optimization, and long-

term environmental monitoring. These case examples 

illustrate how integrating machine learning, geospatial 

analytics, physics-informed modelling, and multi-

source environmental data can reveal patterns and 

pathways previously obscured by the limitations of 

traditional modelling tools (Hipsey, et al., 2015, 

Scheidt, Li & Caers, 2018). 

One compelling example involves an industrial site 

contaminated with chlorinated solvents leaked from 

historical degreasing operations. Conventional plume 

modelling based on deterministic hydrogeological 

simulations had struggled to accurately represent 

observed plume behaviour due to the site’s 

heterogeneous subsurface conditions, including 

fractured bedrock and variable soil permeability. A 

data-driven framework was implemented to improve 

pathway predictions by integrating decades of 

monitoring well records, soil geochemistry, 

geophysical surveys, and real-time groundwater level 

sensors. Machine learning algorithms were trained to 

identify relationships between geological features and 

contaminant concentrations, while physics-informed 

neural networks enforced continuity with groundwater 

flow principles. The resulting predictions showed a 

significantly improved match with field observations 

compared to deterministic models, particularly in 

identifying secondary migration pathways that had 

previously gone undetected (Deschaine, 2014, Kresic 

& Mikszewski, 2012). This enhanced predictive 

capability allowed remediation engineers to redesign 

extraction well placement, prioritize high-risk zones, 

and avoid unnecessary drilling in areas that posed 

minimal contamination risk. Ultimately, the updated 

remediation strategy reduced operational costs and 

shortened cleanup timelines, demonstrating the 

practical value of the data-driven framework. 

A second example can be drawn from a simulated 

petroleum spill scenario designed to test the robustness 

of different modelling approaches under varying 

hydrogeological conditions. The simulation 

incorporated synthetic datasets representing sandy 

aquifers, clay lenses, and fractured rock systems to 

mimic real-world complexity. Deterministic 

advection–dispersion models produced plume 

predictions that were highly sensitive to small 

variations in soil permeability and groundwater 

gradients, resulting in large uncertainties in predicted 

plume length and direction. In contrast, the data-driven 

framework utilized unsupervised clustering to classify 

subsurface regions with similar geophysical 

characteristics, improving the representation of 

preferential flow zones (Bello-Dambatta & Javadi, 

2010, Felisa, et al., 2015). Supervised learning models, 

trained on synthetic tracer test results, provided more 

reliable estimates of contaminant velocity and 

attenuation rates across different subsurface materials. 

When predictions were compared to the “true” 

simulated plume, the data-driven approach 

demonstrated substantially higher spatial accuracy and 

reduced prediction error. This case not only validated 

the framework’s predictive strength but also 

highlighted its resilience to parameter uncertainty an 

essential advantage when working with incomplete or 

variable field data. 

A third case study involved a former agricultural site 

impacted by nitrate leaching from fertilizer 

applications. Predicting nitrate migration is 

particularly challenging because its movement 
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depends on dynamic interactions among soil moisture, 

microbial processes, groundwater recharge, and 

agricultural practices. Deterministic models often 

oversimplify these interactions, leading to inaccurate 

forecasts of groundwater contamination hotspots. In 

this agricultural case, the data-driven framework 

integrated remote-sensing data on vegetation health, 

rainfall records, soil moisture sensors, groundwater 

monitoring data, and laboratory nitrate measurements. 

Time-series prediction techniques, such as long short-

term memory (LSTM) networks, captured seasonal 

variations in nitrate mobility, while geospatial 

analytics mapped the spatial distribution of high-risk 

zones (Liang, 2018, McGrath, Reid & Tran, 2017). 

The resulting predictions enabled water managers to 

implement targeted mitigation strategies such as 

buffer strips, adjusted fertilizer application schedules, 

and enhanced monitoring in areas projected to have 

elevated nitrate concentrations. By comparing these 

predictions with field measurements collected over 

several years, the framework demonstrated high 

temporal accuracy and provided valuable insights for 

regulatory agencies tasked with protecting drinking 

water sources. 

Another practical application can be observed in urban 

brownfield redevelopment projects, where complex 

mixtures of contaminants often coexist due to 

historical industrial usage. One such project involved 

a former manufacturing site with petroleum 

hydrocarbons, heavy metals, and polycyclic aromatic 

hydrocarbons (PAHs). Traditional plume models 

could not adequately capture interactions between 

these contaminants or account for the influence of 

urban infrastructure on subsurface flow patterns. The 

data-driven framework implemented for this project 

used multi-contaminant modelling techniques, 

integrating soil vapor intrusion measurements, 

groundwater data, building foundation maps, and 

chemical degradation profiles (Bello-Dambatta, 2010, 

Leeson, et al, 2013). Machine learning algorithms 

identified zones where co-contaminant interactions 

accelerated degradation or mobilization, while 

geospatial analytics mapped risk zones under existing 

and future land-use scenarios. This allowed urban 

planners and developers to make informed decisions 

regarding excavation requirements, building 

foundation design, and long-term monitoring plans. 

The framework also facilitated compliance with 

regulatory risk assessment requirements by producing 

transparent and scientifically defensible predictions. 

A further example involves a coastal industrial facility 

where saline intrusion complicates contaminant 

transport dynamics. Deterministic models struggled to 

account for density-driven flow processes affecting 

the migration of heavy metals and industrial solvents. 

A data-driven approach combined seawater intrusion 

models, tidal fluctuation data, electrical conductivity 

measurements, and chemical concentration profiles to 

better represent the dynamic interface between 

freshwater and saline water. Physics-informed 

machine learning models simulated contaminant 

movement under fluctuating tidal conditions, 

revealing periodic shifts in plume direction and 

intensity that were missed by traditional methods 

(Awe, Akpan & Adekoya, 2017, Osabuohien, 2017). 

These insights helped engineers design adaptive 

remediation systems capable of responding to tidal 

cycles, including adjustable pumping schedules and 

dynamic barrier controls, ultimately improving 

remediation efficiency. 

Across all these cases, a consistent theme emerges: 

data-driven frameworks provide superior predictive 

power by capturing the nonlinearity, heterogeneity, 

and temporal variability inherent in subsurface 

environments. Their ability to leverage diverse 

datasets allows them to uncover subtle patterns and 

interactions that deterministic models lack the 

flexibility to represent. Additionally, the probabilistic 

outputs generated by many data-driven models 

enhance decision-making by quantifying uncertainty, 

allowing remediation planners to make risk-informed 

choices rather than relying on single deterministic 

estimates (Awe & Akpan, 2017). 

Decision-support relevance is another major benefit 

highlighted in these case studies. The integration of 

data-driven outputs into geospatial visualization tools 

enables stakeholders to interact with contamination 

maps, identify priority zones, and evaluate 

remediation alternatives. These visuals help 

regulators, community members, and project 

engineers understand contamination risks more 

clearly, fostering transparency and collaborative 

decision-making. Furthermore, many data-driven 

frameworks support scenario analysis, allowing users 
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to simulate the effects of different remediation 

strategies, climatic events, or operational changes. 

This level of adaptability is essential in the face of 

evolving environmental conditions and regulatory 

expectations (Akpan, et al., 2017, Oni, et al., 2018). 

Importantly, the transition from deterministic to data-

driven approaches does not eliminate the role of 

traditional hydrogeological modelling; rather, it 

enhances it. By coupling data-driven insights with 

physics-based simulations, the hybrid models 

produced in many of these case studies capture both 

empirical patterns and scientifically grounded 

processes. This integration leads to more reliable 

forecasts, better alignment with field observations, and 

improved remediation outcomes (Ike, et al., 2018). 

Overall, the case studies demonstrate that data-driven 

frameworks provide tangible advantages across a wide 

range of contamination scenarios. They improve 

predictive accuracy, reduce uncertainty, optimize 

remediation resource allocation, and strengthen 

regulatory compliance. Whether applied to industrial 

sites, agricultural landscapes, urban environments, or 

coastal zones, these frameworks consistently 

outperform conventional models and represent a 

transformative advancement in environmental 

remediation practice. As environmental challenges 

intensify and data availability expands, data-driven 

approaches will continue to play a central role in 

safeguarding groundwater resources, protecting public 

health, and enabling effective and sustainable 

remediation strategies (Awe, 2017, Osabuohien, 

2019). 

2.8.  Conclusion 

The development of a data-driven framework for 

predicting subsurface contamination pathways offers a 

transformative advancement in environmental 

remediation, providing a more accurate, adaptive, and 

holistic understanding of contaminant behaviour 

beneath the ground. The key findings across the 

framework components reveal that integrating diverse 

datasets ranging from hydrogeological measurements 

and soil geochemistry to geospatial mapping, 

monitoring records, sensor networks, and laboratory 

analyses greatly enhances the capacity to represent the 

complexity of subsurface systems. Machine learning 

techniques, physics-informed modelling, geospatial 

analytics, and time-series prediction collectively 

address the nonlinearities and uncertainties that 

traditional deterministic models often fail to capture. 

Through this multidimensional analytical architecture, 

the framework generates more precise plume 

forecasts, identifies previously undetected migration 

pathways, delineates high-risk zones, and improves 

the scientific and operational foundation for 

remediation decision-making. 

In practical terms, the framework significantly 

strengthens remediation engineering by improving the 

accuracy of contamination assessments and enabling 

more strategic resource allocation. Enhanced pathway 

prediction supports optimized well placement, 

targeted soil or groundwater treatment, and more 

efficient remediation system designs. The integration 

of uncertainty quantification further enriches decision-

making, providing probabilistic insights that guide 

risk-based planning and regulatory compliance. The 

case studies demonstrate that this approach not only 

improves predictive reliability but also reduces long-

term remediation costs, shortens project timelines, and 

enhances stakeholder confidence by offering 

transparent, data-supported outcomes. The 

framework’s ability to incorporate historical plume 

behaviour and dynamically update predictions as new 

information becomes available highlights its value for 

long-term monitoring and adaptive management. 

Despite its strengths, several limitations remain. The 

accuracy of predictions is still constrained by data 

availability, spatial coverage, and sensor reliability. 

Heterogeneous subsurface environments can produce 

complex interactions that challenge even advanced 

machine learning models. Computational demands 

may be significant when integrating large datasets or 

running hybrid simulations. Moreover, while physics-

informed models improve predictive realism, they still 

depend on accurate representation of physical 

processes and high-quality boundary conditions. 

There is also an ongoing need to enhance model 

interpretability, ensuring that highly technical outputs 

can be clearly understood by regulators, engineers, and 

community stakeholders. 

Future research should prioritize real-time data 

integration to enhance responsiveness to evolving 

subsurface conditions. Incorporating data streams 
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from advanced sensing technologies such as 

distributed fiber-optic sensing, autonomous 

subsurface probes, and novel geophysical imaging 

methods will increase temporal and spatial resolution, 

improving both predictive accuracy and early-warning 

capabilities. Expanding the use of hybrid models that 

further unify machine learning with multiphase flow 

and reactive transport simulations will help capture 

more complex contamination behaviours. Research 

should also explore cloud-based platforms and edge 

computing to support scalable, real-time modelling 

across large or remote sites. Additionally, developing 

explainable AI tools for environmental applications 

will help bridge the gap between computational 

sophistication and practical usability. 

In conclusion, the data-driven framework represents a 

powerful and forward-looking approach to 

understanding and managing subsurface 

contamination. By integrating multi-source data with 

advanced analytical tools, it provides deeper insight, 

greater predictive confidence, and more effective 

remediation strategies than traditional methods. 

Continued innovation in real-time monitoring, 

advanced sensing, hybrid modelling, and 

explainability will further strengthen this framework, 

supporting sustainable environmental protection and 

more resilient remediation practices in increasingly 

complex contamination scenarios. 
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