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Abstract- The exorbitant costs, protracted timelines, and 

elevated attrition rates associated with traditional drug-

discovery pipelines underscore the pressing necessity for 

computational frameworks that can elucidate 

biomolecular interactions with quantum-level precision 

and practical scalability. This study introduces a Hybrid 

Quantum Classical (HQC) framework that combines 

quantum variational algorithms, classical molecular 

dynamics, and quantum-assisted machine-learning 

optimization into a single drug-screening workflow. It 

builds on the basic idea of Quantum Molecular Simulation 

(QMS). In the suggested design, quantum processors are 

used to selectively fix high-fidelity electronic interactions 

in reactive binding sites, while classical engines model the 

large-scale conformational dynamics of biomolecular 

environments. An adaptive quantum-machine-learning 

layer speeds up convergence even more by learning how 

structure and energy are related from quantum-refined 

descriptors. Benchmark tests against oncogenic targets like 

EGFR, BCR-ABL1, and p53 show that our method is up to 

27% more accurate at converging binding energy and takes 

4.3 times less time to compute than standard density-

functional-theory and standalone QMS methods. The 

HQC framework makes quantum drug simulation possible 

for real-world drug discovery by reducing the limitations of 

current quantum hardware while keeping electronic-scale 

accuracy. This study demonstrates that hybrid quantum-

classical modeling is a scalable and hardware-compatible 

approach for advancing next-generation computational 

drug design and precision therapeutics. 
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I. INTRODUCTION 

 

Drug discovery remains one of the most challenging 

and resource-intensive undertakings in modern 

biomedical research. Developing a single clinically 

approved compound typically demands an investment 

exceeding US $2.6 billion and an average timeline of 

10 to 15 years, even under optimized research and 

development (R&D) conditions (DiMasi et al., 2016). 

The situation is especially critical in oncology, where 

less than 10 percent of drug candidates entering 

clinical trials achieve regulatory approval (Paul et al., 

2010). Such inefficiency stems from multifactorial 

bottlenecks ranging from inadequate target validation 

and high attrition rates to the limited predictive power 

of classical molecular-modeling and screening 

techniques. 

 

At its core, the challenge lies in the inability of 

conventional computational pipelines to fully capture 

the quantum-mechanical nature of molecular 

interactions that govern binding affinity, reaction 

kinetics, and off-target effects. Classical molecular-

mechanics (MM) models, though scalable, 

approximate atomic interactions using empirical 

potential functions that neglect electron correlation, 

charge transfer, and tunneling effects factors critical to 

biochemical accuracy in drug design. Consequently, 

promising candidates often fail in later-stage trials due 

to unforeseen electronic or conformational 

complexities within their biological targets. 

 

To address these limitations, Atalor et al. (2023) 

introduced the concept of Quantum Molecular 

Simulation (QMS), a framework built on first-

principle quantum mechanics to directly model drug 

target interactions at electronic resolution. Their study, 

Harnessing Quantum Molecular Simulation for 

Accelerated Cancer Drug Screening (DOI: 

10.38124/ijsrmt.v2i1.502), established both a 

theoretical foundation and computational prototype 

for integrating Variational Quantum Eigensolvers 

(VQE) and Quantum Phase Estimation (QPE) 

algorithms into pharmacological modeling. QMS 

demonstrated near-chemical accuracy in calculating 
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binding energies and reaction pathways, representing 

one of the earliest practical attempts to incorporate 

quantum computing into oncology-focused drug 

discovery. However, the pure quantum design of 

QMS, while conceptually transformative, faced 

inherent scalability barriers. Decoherence, qubit 

instability, and algorithmic overhead restricted 

simulations to relatively small molecular systems 

(Reiher et al., 2017). These limitations hindered the 

application of QMS to large biomolecular targets such 

as kinases, hormone receptors, or protein DNA 

complexes that are central to modern anticancer 

therapeutics. 

 

Building on these insights, Dr. Nosiri proposed a 

Hybrid Quantum–Classical (HQC) architecture 

designed to bridge the precision of quantum 

mechanics with the scalability of classical 

computation. In this approach, the quantum layer 

performs high-fidelity active-site simulations, while 

classical molecular-dynamics engines model the 

broader biological environment. The hybrid pipeline is 

further augmented with quantum-machine-learning 

(QML) algorithms that infer binding affinities from 

quantum-refined descriptors, achieving an adaptive 

feedback mechanism between quantum and classical 

domains. 

 

This integration not only mitigates quantum-hardware 

constraints but also accelerates data throughput and 

predictive reliability. The present study therefore 

extends Atalor et al.’s theoretical QMS model into an 

experimentally deployable hybrid workflow, 

demonstrating how quantum mechanics, classical 

dynamics, and AI inference can operate cooperatively 

to shorten discovery timelines, improve binding-

affinity accuracy, and make next-generation 

computational pharmacology a tangible reality. 

 

1.2 From Atalor to Nosiri: Methodological Adoption 

Dr. Nosiri's HQC model builds on and improves 

Atalor's quantum-molecular-simulation workflow in 

three main ways: 

1. Quantum Core Adoption: The quantum-

mechanical kernel that Atalor used to calculate 

active-site electronic structure with high accuracy 

is still used. It is based on Density Functional 

Theory (DFT), Hartree Fock (HF), and hybrid 

QM/MM methods (Atalor et al., 2023; Bartlett & 

Musiał, 2007). 

2. Classical Layer Integration: Nosiri adds a classical 

molecular-dynamics (MD) layer to model how 

proteins and solvents interact with each other. This 

is done using CHARMM-based force fields (Senn 

& Thiel, 2009). This adaptation solves the problem 

of QMS scalability by moving non-reactive areas 

to high-performance classical nodes. 

3. AI-Assisted Optimization: Nosiri uses quantum-

machine-learning (QML) models, specifically 

Quantum Support Vector Machines (QSVMs), to 

connect quantum output with biological data. 

These models look at potential-energy surfaces and 

predict how likely a ligand will bind (Schuld et al., 

2015; Biamonte et al., 2017). 

 

Dr. Nosiri turns Atalor's QMS theory into a hybrid 

pipeline that works with Noisy Intermediate-Scale 

Quantum (NISQ) devices (Preskill, 2018) by using 

this layered approach. This makes it possible to use 

drug screening in the real world. 

 

1.3 Research Objectives 

The study pursues four interrelated objectives: 

1. To adapt Atalor’s QMS into a hybrid quantum 

classical architecture optimized for current 

hardware constraints. 

2. To quantify performance gains in accuracy, 

convergence, and runtime relative to both DFT and 

QMS-only methods. 

3. To demonstrate biological applicability through 

simulation of oncogenic targets (EGFR, BCR-

ABL1, p53). 

4. To evaluate the integration of AI for affinity 

prediction and lead optimization. 

 

II. THEORETICAL FRAMEWORK 

 

2.1 Hybrid Quantum Classical Partitioning 

The HQC framework retains Atalor’s division 

between quantum mechanics (QM) and molecular 

mechanics (MM) subsystems but introduces real-time 

coupling between them. The total Hamiltonian is 

expressed as: 

𝐻𝑡𝑜𝑡𝑎𝑙 = 𝐻𝑄𝑀 + 𝐻𝑀𝑀 + 𝐻𝑄𝑀/𝑀𝑀 
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where 𝐻𝑄𝑀represents the electronic region solved on 

quantum hardware (e.g., IBM Qiskit Eagle 127-qubit 

system), 𝐻𝑀𝑀models classical interactions, and 

𝐻𝑄𝑀/𝑀𝑀handles boundary coupling (Warshel & 

Levitt, 1976). Nosiri’s modification extends Atalor’s 

static QM/MM model by allowing dynamic exchange 

of wavefunction parameters between quantum and 

classical layers during each iteration, improving 

convergence stability by ~27 % (Kumar et al., 2024). 

 

2.2 Quantum Algorithms Adopted from Atalor 

Atalor's research identified two quantum algorithms, 

VQE and QPE, for determining molecular eigenvalues 

(Atalor et al., 2023). Dr. Nosiri keeps VQE because it 

can handle noise, but she rewrites the classical 

optimizer using gradient-based Adam optimization, 

which makes it easier to converge on quantum devices 

that are noisy (McArdle et al., 2020).Their work also 

presented Quantum Approximate Optimization 

Algorithm (QAOA) for combinatorial conformer 

sampling (Farhi et al., 2014), which lowers the cost of 

computing lead-structure selection. 

 

2.3 Quantum Machine Learning Extension 

Nosiri expands Atalor’s static QMS pipeline with 

Quantum Machine Learning (QML). Binding-energy 

datasets from quantum simulations are embedded into 

high-dimensional Hilbert spaces through quantum-

kernel estimators, facilitating superior clustering of 

drug-like compounds (Biamonte et al., 2017). This 

integration accelerates early-stage virtual screening by 

identifying high-affinity molecules with a 1 in 57 hit 

rate, compared with classical 1 in 113 benchmarks 

(Ghosh et al., 2014). 

 

(Quantum layer for active-site simulation → classical 

molecular-dynamics layer → QML inference engine 

for affinity prediction). 

 

 
Figure 1. Schematic of the Hybrid Quantum Classical 

Architecture 

 
Figure 2: Quantum circuit compilation workflow for 

drug target Binding simulation 

 

III. MATERIALS AND METHODS 

 

3.1 Computational Architecture 

Dr. Nosiri’s HQC framework uses a three-tier 

pipeline derived from Atalor et al. (2023): 

1. Quantum layer: Variational Quantum Eigensolver 

(VQE) and Quantum Approximate Optimization 

Algorithm (QAOA) implemented on the IBM Q 

Eagle 127-qubit processor and D-Wave Advantage 

2.1 annealer. 

2. Classical layer : Molecular-dynamics simulations 

using CHARMM and GROMACS 2024, modeling 

solvent and protein backbone. 

3. AI optimization layer : Quantum-enhanced 

Support Vector Machines (QSVMs) via Xanadu 

PennyLane, linking quantum-energy descriptors to 

binding-affinity prediction. 

 

Table 1. Computational parameters used in the HQC 

workflow 

Quantum back-end IBM Q Eagle (127 

qubits) / D-Wave 

Advantage 2.1 

Classical engine CHARMM + 

GROMACS 2024 

(GPU A100) 

Algorithms VQE / QAOA / QPE 

(optional 

benchmarking) 

Optimizer Adam (η = 0.001) 

Benchmark molecules Imatinib (BCR-ABL1), 

Gefitinib (EGFR), 

Tamoxifen (ERα) 

Simulation temperature 298 K 

Basis sets 6-31G* and def2-TZVP 

Runtime 2.5 ± 0.3 h per target 
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3.2 Workflow Description 

The HQC workflow begins with classical 

preprocessing of molecular geometries followed by 

quantum refinement of active-site electronic states. A 

schematic overview (Fig. 1) illustrates data exchange 

between subsystems: 

1) The classical layer provides geometry coordinates 

𝑅𝑖; 

2) The quantum layer computes energies 𝐸𝑞(𝑅𝑖); 

3) The AI layer predicts optimal binding via 

regression over quantum descriptors. 

This closed-loop iteration continues until energy 

convergence < 0.25 kcal mol⁻¹ is achieved. 

 

3.3 Datasets 

Training data consisted of 42 oncogenic complexes 

curated from the Protein Data Bank (PDB) and prior 

QMS datasets of Atalor et al. (2023). Ligand 

conformers were optimized at B3LYP/6-31G* level, 

and 80 % were used for training the QSVM, 20 % for 

testing. 

 

IV. RESULTS 

 

4.1 Energy-Convergence Benchmarking 

Compared to the pure QMS model of Atalor et al. 

(2023), Nosiri’s hybrid approach achieved faster and 

more accurate convergence (Table 2). 

 

These results confirm that hybrid feedback loops 

reduce decoherence-induced error and enable larger-

system scalability (Reiher et al., 2017; Kumar et al., 

2024). 

 

Table 2. Performance comparison of DFT, QMS, and 

HQC methods 

Method Avg ΔE (kcal mol⁻¹) 

DFT (B3LYP) 0.68 ± 0.04 

Atalor QMS 0.35 ± 0.03 

Nosiri HQC 0.24 ± 0.02 

 

Table 3: Computational Parameters 

Parameter Specification 

Quantum back-end 

IBM Q Eagle (127 

qubits) / D-Wave 

Advantage 2.1 

Classical engine 

CHARMM + 

GROMACS 2024 

(GPU A100) 

Algorithms 

VQE / QAOA / QPE 

(optional 

benchmarking) 

Optimizer Adam (Î· = 0.001) 

Benchmark molecules 

Imatinib (BCR-ABL1), 

Gefitinib (EGFR), 

Tamoxifen (ERÎ±) 

Simulation temperature 298 K 

Basis sets 6-31G* and def2-TZVP 

Runtime 2.5 Â± 0.3 h per target 

 

Table 4: Comparative Performance 

Method Avg Î”E (kcal 

molâ•»Â¹) 

Computation 

Time (h) 

Accuracy 

(%) 

DFT 

(B3LYP) 0.68 5.2 89 

Atalor 

QMS 0.35 3.1 94 

Nosiri 

HQC 0.24 1.2 97 

 

 
Fig 1: Energy Convergence Comparison Between 

DFT, QMS and HQC Methods 

 

 
Fig 2: Computation Time Comparison Between 

Methods 
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4.2 Binding-Affinity Prediction 

QSVM regression on hybrid-computed descriptors 

produced R² = 0.93 against experimental ΔG values. 

The mean-absolute-error of 0.21 kcal mol⁻¹ 

outperformed both random-forest and CNN baselines 

(Biamonte et al., 2017; Schuld et al., 2015). 

Figure 2 shows predicted vs. experimental binding 

energies for EGFR inhibitors. 

 

4.3 Computational Efficiency 

Energy-per-simulation reduced by 41 %, and classical 

CPU usage dropped 36 % due to quantum off-loading. 

Theoretical analysis suggests polynomial scaling 

O(N³) compared to exponential scaling of full QMS 

(McArdle et al., 2020). 

 

V. DISCUSSION 

 

The findings of this study indicate that the Hybrid 

Quantum–Classical (HQC) framework represents a 

significant advancement in the methodology of 

computational drug discovery. It successfully avoids 

the problems that classical molecular modeling and 

independent quantum molecular simulation (QMS) 

have had for a long time. The HQC method puts 

quantum electronic-structure calculations, classical 

molecular dynamics, and quantum-enhanced machine 

learning all in one feedback loop. This results in 

enhancements in accuracy, efficiency, and scalability 

that cannot be attained by any singular computational 

method independently (Preskill, 2018; McArdle et al., 

2020; Kumar et al., 2024).  

 

One important result of this study is that the HQC 

method made a big difference in how well binding 

energies converged. The decrease in average energy 

error to 0.24 ± 0.02 kcal·mol⁻¹, which is better than 

both standard DFT and the previous QMS framework, 

shows how important hybrid partitioning is compared 

to full quantum substitution. Even though classical 

DFT can be used on computers, it uses approximations 

that don't fully capture electron correlation, 

polarization, and charge-transfer phenomena that are 

important for biomolecular recognition (Bartlett & 

Musiał, 2007; Senn & Thiel, 2009). Conversely, pure 

Quantum Measurement Systems (QMS) methods are 

constrained by the qubit count, decoherence, and 

circuit depth on existing Noisy Intermediate-Scale 

Quantum (NISQ) hardware (Reiher et al., 2017; 

Preskill, 2018). The HQC model reduces this tension 

by only allowing quantum computation in chemically 

important active-site areas. Classical molecular 

dynamics engines are then in charge of doing a lot of 

conformational sampling and solvent dynamics. This 

division of labor allows for electronic-scale accuracy 

in key domains without incurring the substantial 

expenses associated with modeling an entire quantum 

system (Warshel & Levitt, 1976; McArdle et al., 

2020).  

 

The better convergence behavior seen in HQC 

simulations is not only due to having more processing 

power; it is also due to the fact that the quantum and 

classical layers interact in a dynamic way. The 

ongoing transfer of geometric and energetic data 

enables classical relaxation to partially counteract 

quantum noise, alleviating decoherence-related 

instabilities that have traditionally constrained QMS 

scaling (Preskill, 2018; Kumar et al., 2024). This 

finding corroborates theoretical assertions regarding 

the significance of hybrid feedback structures for 

achieving a quantum advantage in chemistry and 

materials science in the near future (McArdle et al., 

2020). The demonstrated capability to reliably 

simulate systems with more than 500 atoms signifies a 

notable advancement toward practical implementation 

in real-world drug development, as biologically 

pertinent targets frequently surpass the dimensional 

constraints of existing quantum-only approaches 

(Reiher et al., 2017).  

 

The binding-affinity prediction results, along with 

energy convergence, show that the HQC framework is 

important for biology. The quantum-support-vector-

machine (QSVM) model, trained with hybrid-

generated descriptors, attained a coefficient of 

determination (R²) of 0.93 and a mean absolute error 

of 0.21 kcal·mol⁻¹ in comparison to experimental 

binding free energies. These numbers are higher than 

what is typical for classical machine learning models 

that use force-field-based descriptors. This 

demonstrates the significance of quantum-refined 

features that can encapsulate nuanced electronic 

interactions unattainable by classical representations 

alone (Schuld et al., 2015; Biamonte et al., 2017). The 

high level of agreement between predicted and 

experimental affinities for clinically validated 

oncogenic targets such as EGFR, BCR-ABL1, and p53 
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demonstrates that HQC-derived predictions are both 

statistically robust and biophysically significant, 

which is essential for effective drug design in practical 

applications (Ghosh et al., 2014; Paul et al., 2010).  

 

The HQC framework works better in real life because 

it is more efficient from a computational point of view. 

The documented decreases in overall runtime, energy 

usage per simulation, and conventional CPU 

utilization demonstrate that selective quantum off-

loading can provide significant efficiency advantages, 

despite existing hardware limitations (McArdle et al., 

2020; Kumar et al., 2024). The effective scaling 

property is like polynomial complexity, but not like 

the exponential scaling that happens when you fully 

simulate a quantum molecule. This finding 

corroborates the prevailing view that quantum 

computing will exert its most significant influence via 

hybrid architectures that enhance, rather than supplant, 

conventional high-performance computing systems 

(Preskill, 2018).  

 

The relationship between the current HQC model and 

the previous QMS framework proposed by Atalor et 

al. is best characterized as an evolution of 

methodological continuity and enhancement. QMS 

demonstrated the conceptual viability of quantum-

accurate drug screening; however, its practical 

implementation was impeded by hardware limitations 

and scalability issues (Atalor et al., 2023; Reiher et al., 

2017). The HQC framework turns this simple idea into 

a reality by putting QMS into a full computational 

ecosystem that includes both classical dynamics and 

machine learning. This understanding supports earlier 

predictions that quantum molecular simulation will 

need to combine AI and hybridization to be useful in 

real life (Preskill, 2018; McArdle et al., 2020). So, 

HQC shouldn't be thought of as a break from QMS; 

instead, they should be thought of as a logical and 

necessary step forward in the NISQ era.  

 

Even with these improvements, there are still a lot of 

rules that need to be followed. Access to quantum 

hardware is not uniform, and reproducibility across 

platforms may vary due to discrepancies in noise 

characteristics and qubit interconnectivity (Devitt, 

2016). Variational algorithms, including VQE and 

QAOA, exhibit sensitivity to circuit depth, resulting in 

performance degradation beyond moderate 

parameterization (Farhi et al., 2014; McArdle et al., 

2020). Combining quantum processing with AI-driven 

inference makes it harder to be open, understandable, 

and follow the rules. In the pharmaceutical industry, 

these problems happen a lot. This is because results 

must be reproducible and understandable in order to 

get regulatory approval (Mittelstadt et al., 2016). We 

need to make sure that quantum measurement 

procedures, error-mitigation mechanisms, and model-

decision routes all follow the same rules for reporting 

in order to fix these problems.  

 

The results of this study offer compelling evidence 

that hybrid quantum–classical modeling represents a 

feasible and scalable approach for next-generation 

computational drug discovery. The HQC method 

brings together quantum mechanical accuracy, 

classical efficiency, and machine-learning inference 

into one flexible system. This makes predictions much 

better, makes computers work faster, and makes 

biology more accurate. These findings indicate that 

HQC can serve as a valuable connection between 

theoretical quantum chemistry and practical 

advancements in pharmacology. They also offer a 

pragmatic approach to integrating quantum 

technologies into precision medicine workflows as 

quantum hardware advances (DiMasi et al., 2016; Paul 

et al., 2010; Preskill, 2018). 

 

VI. ETHICAL AND REGULATORY 

IMPLICATIONS 

 

The opaque nature of hybrid AI-driven outputs raises 

reproducibility concerns noted by Mittelstadt et al. 

(2016). Transparent logging of quantum measurement 

parameters is recommended for compliance with 

emerging FDA digital-model validation frameworks. 

 

VII. CONCLUSION 

 

Dr. Nosiri’s Hybrid Quantum–Classical Approaches 

for Accelerated Drug Discovery successfully extends 

Atalor et al. (2023) by translating their theoretical 

QMS foundation into a scalable, hardware-practical, 

and AI-augmented workflow. The HQC model 

demonstrates measurable improvements in speed, 

precision, and resource efficiency, marking a pivotal 

evolution in computational pharmacology. 
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