
© JAN 2026 | IRE Journals | Volume 9 Issue 7 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I7-1713245

IRE 1713245 ICONIC RESEARCH AND ENGINEERING JOURNALS 63

SmartView: AI-Based Object Detection System

C M SUMANA1, SUBANI D2, ALUR MUSKAN MAHEK3, N LAKSHMI4
, V ASHWINI5

1Asst Prof, Dept of CSE (Artificial Intelligence and Machine Learning)
2,3,4,5 Students of Dept of CSE (Artificial Intelligence and Machine Learning)

Rao Bahadur Y Mahabaleswarappa Engineering college, Ballari, Karnataka, India.

Abstract - Recent advancements in computer vision have

enabled automated systems to identify and localize

multiple objects efficiently across diverse visual inputs.

This paper presents Smart-view, an AI-based multi-

source object detection system designed for both real-

time and offline visual analysis. The system integrates

the YOLOv8 deep learning model with a Flask-based

web framework to support object detection from images,

prerecorded videos, live webcam streams, and online

video sources such as YouTube. Supporting tools

including Open CV and FFMPEG are employed for

frame acquisition, prepossessing and video conversion.

To enhance usability, computationally intensive tasks

are executed asynchronously, ensuring a responsive user

interface. Detected objects are visually annotated and

systematically logged in structured CSV format for

further analysis. The proposed system demonstrates that

efficient and scalable object detection can be achieved

using lightweight models on CPU-based environments.

Keywords: Object Detection, YOLOv8, Computer Vision,

Flask, Real-Time Processing, AI Applications.

I. INTRODUCTION

Object detection is an essential capability in modern

computer vision systems, enabling automated

analysis of visual data across various application

domains. In this work, Smart View is introduced as

a unified AI-based object detection system designed

for practical deployment rather than theoretical

experimentation. The system supports multiple

visual input sources including images, prerecorded

videos, live webcam streams, and online video links

within a single processing framework Such multi-

source object detection frameworks are widely

adopted in modern computer vision applications

[12].

Smart View integrates the YOLOv8 deep learning

model with a Flask-based web interface to provide

real-time and batch object detection through a

standard web browser. Multimedia processing tools

such as Open CV and FFMPEG are utilized to

handle frame capture, prepossessing and video

conversion. To improve usability, computationally

intensive video detection tasks are executed in the

background, ensuring that the user interface remains

responsive while detection results are generated and

stored for further analysis.

II. REVIEW OF LITERATURE

1. Joseph Redmon et al. Their work “YOLO: You

Only Look Once” explains a real-time single-stage

object detection method where objects are detected

in one pass.

2. Alexey Bochkovskiy et al. Offered their work

“YOLOv4” which improves both speed and

accuracy using optimized training strategies for

efficient object detection.

3.Tsung-Yi Lin et al. Presented their work “Focal

Loss for Dense Object Detection” which handles

class imbalance and improves the precision of

single-stage detectors.

4.Xizhou Zhu et al. Their work “Deep Feature

Flow” explains faster video processing by sharing

features across frames instead of doing full

inference every time.

5.Gary Bradski & Adrian Kaehler. Offered their

work “Learning Open CV” which provides practical

methods for image/video operations like frame

capture, re sizing, drawing, and video writing.

6.Ultralytics Team. Presented their work on

“YOLOv8” which introduces improved architecture,

better training optimization, and faster inference,

making it suitable for real-time image and video

detection tasks used in this project.

III. SYSTEM ARCHTECTURE

The proposed Smart View system is designed as a

modular, web-based object detection platform that

integrates deep learning, video processing, and data

logging into a single application. The architecture

© JAN 2026 | IRE Journals | Volume 9 Issue 7 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I7-1713245

IRE 1713245 ICONIC RESEARCH AND ENGINEERING JOURNALS 64

follows a layered design, separating the presentation

layer (web interface), application logic layer (Flask

and processing modules), and AI/model layer

(YOLOv8), supported by auxiliary components for

media handling, logging, and deployment.

Fig 1: System Architecture

1. System Design & Architecture

→ The system follows a modular architecture using

Flask for the web interface, YOLOv8 for detection,

Open CV and FFMPEG for media processing, multi

threading for background tasks, CSV logging for

analytic, and Docker for deployment. This design

ensures scalability, easy maintenance, and platform

independence.

2. Model Selection (YOLOv8)

→ YOLOv8 is selected due to its high detection

accuracy and real-time inference capability. The

lightweight YOLOv8-nano model is loaded once

during system startup, enabling fast and efficient

object detection for all incoming requests, including

live video streams and interactive visual inputs.

3. Input Handling

→ The system supports four modes of input:

Image Upload – Image is saved, processed by

YOLOv8, and returned with bounding boxes. Video

Upload – Video is uploaded and previewed

instantly; full processing runs in a background

thread. Webcam Stream – Live frames are captured

using Open CV and processed in real time.

YouTube Link – Videos are downloaded using YT-

dlp, frame-processed with YOLOv8, and returned as

browser-compatible output.

4. Frame Processing Workflow

→ During processing, each video frame is re sized

to a resolution of 1280×720 and passed to the

YOLOv8 model with a confidence threshold of 0.4.

Detected objects are annotated with bounding boxes

and class labels before being encoded for output

visualization.

5. Background Processing (Multi-threading)

→ Multi-threaded background processing ensures

that long-running detection tasks do not block the

Flask web interface, allowing results to be displayed

smoothly after processing completes., which is

essential for processing live video streams and

interactive visual inputs. Flask remains responsive

during processing, and results are displayed

automatically after completion, ensuring smooth

user interaction.

6. Detection Logging (CSV Analytic)

→All detection outputs are saved in

static/detection.CSV with details such as timestamp,

input type, file/URL, frame number, detected

objects, and object counts, enabling future analysis

and comparison.

7. Web Interface (Flask)

→Flask manages file uploads, form handling,

webcam streaming, displaying processed media, and

presenting detection logs. The interface is designed

to be simple, responsive, and user-friendly.

8. Deployment Using Docker

→Docker containerizes the entire system,

eliminating dependency issues and enabling easy

setup and cloud deployment on platforms like

Render or AWS.

9. Testing & Validation

→Extensive testing was conducted on images,

videos, online streams, and live webcam inputs to

evaluate system performance. Evaluation focuses on

detection accuracy, processing speed, playback

smoothness, thread

© JAN 2026 | IRE Journals | Volume 9 Issue 7 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I7-1713245

IRE 1713245 ICONIC RESEARCH AND ENGINEERING JOURNALS 65

stability, and correctness of CSV logs. YOLOv8

delivers fast and accurate detection across all inputs.

IV. IMPLEMENTATION

The project was implemented in a phased approach

to build a unified object detection system supporting

images, videos, webcam, and YouTube streams. The

components interact in a pipeline where the user

submits input (image, video, webcam, or YouTube

URL), the server processes the input using the

YOLOv8 model, generates processed outputs

(images/videos with bounding boxes), logs metadata

to a CSV file, and returns the results back to the

browser for visualization.

Fig 2: Different Phases of Object Detection System

Phase 1 — Requirement Analysis: Defined project

scope, user goals, functional and non-functional

requirements, and hardware suggestions. Key

deliverable included requirements text and

documentation.

Phase 2 — Architecture & Design: Designed a

modular architecture with Flask back end, YOLO

inference, video processing pipeline, storage, and UI.

Module boundaries and deployment strategy

(Docker) were finalized.

Phase 3 — Environment Setup: Configured

reproducible environments with Python

dependencies, Docker file, and optional docker-

compose setup to ensure seamless local and

containerized execution.

Phase 4 — Model Integration (Image): Integrated

YOLOv8 for image detection with confidence

threshold and generated annotated outputs saved for

visualization.

Phase 5 — Video & Live Stream Processing:

Implemented robust video handling for file uploads,

webcam, and YouTube streams (VOD and live)

using FFmpeg and background processing.

Phase 6 — Persistence & APIS: Detection metadata

stored in CSV with REST endpoints for JSON

retrieval and file download, ensuring easy access

and traceability.

Phase 7 — Front end & UX: Developed intuitive UI

for uploads, live monitoring, and detection results

viewing with responsive design and client-side

status updates.

Phase 8 — Testing & Validation: Performed unit

and manual testing for all functionalities, including

image, video, live streams, and API endpoints to

ensure robustness.

Phase 9 — CI/CD & Container Build: Automated

Docker image builds and deployment using GitHub

Actions, optimizing reproducibility and release

efficiency.

Phase 10 — Deployment & Operations: Deployed

containerized application with persistent storage,

GPU support, logging, and monitoring for reliable

operation.

Phase 11 — Hardening & Future Enhancements:

Planned migration to a database, authentication, job

queues, and tracking extensions to scale and

production the system.

V. RESULT

A. Image Detection

The system accurately identified objects in uploaded

images using YOLOv8n. Output images

(detected_<filename>.JPG) were generated, and

© JAN 2026 | IRE Journals | Volume 9 Issue 7 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I7-1713245

IRE 1713245 ICONIC RESEARCH AND ENGINEERING JOURNALS 66

detected class names were logged into

detection.CSV. High precision was observed for

common objects such as persons, vehicles, and

household items. Average processing time was less

than 1 second per image.

B. Video Detection

Videos were processed frame-by-frame with YOLO

inference. A first-frame preview was generated in

1–2 seconds, while full video processing occurred in

the background. Output videos were saved in .AVI

and converted to browser-friendly .mp4 format.

Detected objects per frame were logged with

timestamps. Typical frame rates ranged from 20–30

FPS depending on resolution.

C. YouTube URL Detection

YouTube videos and live streams were downloaded

or recorded using YTdlp and FFMPEG. Every 10th

frame was processed to reduce computation. Output

videos with bounding boxes were generated in both

standard and web.mp4 formats for smooth playback.

This feature allows detection on online media

sources.

D. Webcam Stream Detection

Real-time webcam detection produced live

bounding boxes and MJPEG streamed frames with

minimal lag. Continuous detection achieved 8–15

FPS on CPU hardware, demonstrating suitability for

surveillance applications.

E. Detection Logging

All detection across images, videos, YouTube, and

webcam streams were logged in detection's.CSV,

including: timestamp, source type, source name,

frame number, detected class names, and object

counts. The CSV enables further analytic, heat

maps, and model evaluation.

© JAN 2026 | IRE Journals | Volume 9 Issue 7 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I7-1713245

IRE 1713245 ICONIC RESEARCH AND ENGINEERING JOURNALS 67

VI. CONCLUSION

The Smart View system successfully demonstrates a

robust and versatile object detection platform built

using YOLOv8, Flask, Open CV, and FFMPEG.

The project achieves its goal of providing a unified

interface for detecting objects in images, videos,

webcam streams, and YouTube sources, making it

suitable for multiple real-world applications such as

surveillance, monitoring, and analytic.

By combining real-time inference with intuitive

visual outputs, the system offers both practicality

and efficiency. The integration of background

processing, automatic video conversion, and

detection logging enhances usability and reliability.

Overall, Smart View shows that advanced computer

vision capabilities can be deployed effectively even

on CPU-based environments, without requiring

high-end GPU resources. The proposed architecture

demonstrates that scalable and multi-source object

detection systems can be effectively implemented

using lightweight models and open-source

frameworks.

REFERENCES

[1] Ultralytics, “YOLOv8: Next-Generation Object

Detection,” Ultralytics

Documentation.[Online].Available:

https://docs.ultralytics.com/

[2] Ultralytics “Ultralytics/ultralytics – YOLOv8

Official GitHub

Repository,”GitHub.[Online].Available:

https://github.com/ultralytics/ultralytics

[3] PyTorch Foundation, “PyTorch

Documentation”, PyTorch.org. [Online].

Available: https://pytorch.org/

[4] G. Bradski, “The Open CV Library,” Open CV

Documentation. [Online]. Available:

https://docs.opencv.org/

[5] A. Ronacher, “Flask: A Python Micro

framework,” Flask

Documentation.[Online].Available:

https://flask.palletsprojects.com/

[6] FFMPEG Team, “FFMPEG Documentation,”

FFmpeg.org. [Online]. Available:

https://ffmpeg.org/documentation.html

[7] yt-dlp Developers, “yt-dlp: A Feature-Rich

YouTube Downloader,” GitHub. [Online].

Available: https://github.com/yt-dlp/yt-dlp

[8] C. R. Harrisetal., “Array programming with

Numpy,” Numpy Documentation. [Online].

Available: https://numpy.org/doc/

[9] Python Software Foundation, “Python 3

Documentation,” Python.org. [Online].

Available: https://docs.python.org/

[10] Docker Inc., “Docker Documentation,” Docker

Docs. [Online]. Available:

https://docs.docker.com/

[11] Pallets Projects, “Werkzeug & Jinja2

Documentation,”

PalletsProjects.com.[Online].Available:

https://palletsprojects.com/

[12] J. Redmon, S. Divvala, R. Girshick, and A.

Farhadi, “You Only Look Once: Unified, Real-

Time Object Detection,”

arXiv:1506.02640,2015.[Online].Available:

https://arxiv.org/abs/1506.02640

[13] Apple Inc., “HTTP Live Streaming (HLS)

Specification,” Apple Developer

Documentation. [Online]. Available:

https://developer.apple.com/streaming/

https://docs.ultralytics.com/
https://github.com/ultralytics/ultralytics
https://pytorch.org/
https://docs.opencv.org/
https://flask.palletsprojects.com/
https://ffmpeg.org/documentation.html
https://github.com/yt-dlp/yt-dlp
https://numpy.org/doc/
https://docs.python.org/
https://docs.docker.com/
https://palletsprojects.com/
https://arxiv.org/abs/1506.02640
https://developer.apple.com/streaming/

