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Abstract - Recent advancements in computer vision have 

enabled automated systems to identify and localize 

multiple objects efficiently across diverse visual inputs. 

This paper presents Smart-view, an AI-based multi-

source object detection system designed for both real-

time and offline visual analysis. The system integrates 

the YOLOv8 deep learning model with a Flask-based 

web framework to support object detection from images, 

prerecorded videos, live webcam streams, and online 

video sources such as YouTube. Supporting tools 

including Open CV and FFMPEG are employed for 

frame acquisition, prepossessing and video conversion. 

To enhance usability, computationally intensive tasks 

are executed asynchronously, ensuring a responsive user 

interface. Detected objects are visually annotated and 

systematically logged in structured CSV format for 

further analysis. The proposed system demonstrates that 

efficient and scalable object detection can be achieved 

using lightweight models on CPU-based environments. 
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I. INTRODUCTION 

 

Object detection is an essential capability in modern 

computer vision systems, enabling automated 

analysis of visual data across various application 

domains. In this work, Smart View is introduced as 

a unified AI-based object detection system designed 

for practical deployment rather than theoretical 

experimentation. The system supports multiple 

visual input sources including images, prerecorded 

videos, live webcam streams, and online video links 

within a single processing framework Such multi-

source object detection frameworks are widely 

adopted in modern computer vision applications 

[12]. 

 

Smart View integrates the YOLOv8 deep learning 

model with a Flask-based web interface to provide 

real-time and batch object detection through a 

standard web browser. Multimedia processing tools 

such as Open CV and FFMPEG are utilized to 

handle frame capture, prepossessing and video 

conversion. To improve usability, computationally 

intensive video detection tasks are executed in the 

background, ensuring that the user interface remains 

responsive while detection results are generated and 

stored for further analysis. 

 

II. REVIEW OF LITERATURE 

 

1. Joseph Redmon et al. Their work “YOLO: You 

Only Look Once” explains a real-time single-stage 

object detection method where objects are detected 

in one pass. 

 

2. Alexey Bochkovskiy et al. Offered their work 

“YOLOv4” which improves both speed and 

accuracy using optimized training strategies for 

efficient object detection. 

 

3.Tsung-Yi Lin et al. Presented their work “Focal 

Loss for Dense Object Detection” which handles 

class imbalance and improves the precision of 

single-stage detectors. 

 

4.Xizhou Zhu et al. Their work “Deep Feature 

Flow” explains faster video processing by sharing 

features across frames instead of doing full 

inference every time. 

 

5.Gary Bradski & Adrian Kaehler. Offered their 

work “Learning Open CV” which provides practical 

methods for image/video operations like frame 

capture, re sizing, drawing, and video writing. 

 

6.Ultralytics Team. Presented their work on 

“YOLOv8” which introduces improved architecture, 

better training optimization, and faster inference, 

making it suitable for real-time image and video 

detection tasks used in this project. 

 

III. SYSTEM ARCHTECTURE 

 

The proposed Smart View system is designed as a 

modular, web-based object detection platform that 

integrates deep learning, video processing, and data 

logging into a single application. The architecture 
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follows a layered design, separating the presentation 

layer (web interface), application logic layer (Flask 

and processing modules), and AI/model layer 

(YOLOv8), supported by auxiliary components for 

media handling, logging, and deployment. 

 

 
Fig 1: System Architecture 

 

1. System Design & Architecture 

→ The system follows a modular architecture using 

Flask for the web interface, YOLOv8 for detection, 

Open CV and FFMPEG for media processing, multi 

threading for background tasks, CSV logging for 

analytic, and Docker for deployment. This design 

ensures scalability, easy maintenance, and platform 

independence. 

 

2. Model Selection (YOLOv8) 

→ YOLOv8 is selected due to its high detection 

accuracy and real-time inference capability. The 

lightweight YOLOv8-nano model is loaded once 

during system startup, enabling fast and efficient 

object detection for all incoming requests, including 

live video streams and interactive visual inputs. 

 

3. Input Handling 

→ The system supports four modes of input: 

Image Upload – Image is saved, processed by 

YOLOv8, and returned with bounding boxes. Video 

Upload – Video is uploaded and previewed 

instantly; full processing runs in a background 

thread. Webcam Stream – Live frames are captured 

using Open CV and processed in real time.  

YouTube Link – Videos are downloaded using YT-

dlp, frame-processed with YOLOv8, and returned as 

browser-compatible output. 

 

4. Frame Processing Workflow 

→ During processing, each video frame is re sized 

to a resolution of 1280×720 and passed to the 

YOLOv8 model with a confidence threshold of 0.4. 

Detected objects are annotated with bounding boxes 

and class labels before being encoded for output 

visualization. 

 

5. Background Processing (Multi-threading) 

→ Multi-threaded background processing ensures 

that long-running detection tasks do not block the 

Flask web interface, allowing results to be displayed 

smoothly after processing completes., which is 

essential for processing live video streams and 

interactive visual inputs. Flask remains responsive 

during processing, and results are displayed 

automatically after completion, ensuring smooth 

user interaction. 

 

6. Detection Logging (CSV Analytic) 

→All detection outputs are saved in 

static/detection.CSV with details such as timestamp, 

input type, file/URL, frame number, detected 

objects, and object counts, enabling future analysis 

and comparison. 

 

7. Web Interface (Flask) 

→Flask manages file uploads, form handling, 

webcam streaming, displaying processed media, and 

presenting detection logs. The interface is designed 

to be simple, responsive, and user-friendly. 

 

8. Deployment Using Docker 

→Docker containerizes the entire system, 

eliminating dependency issues and enabling easy 

setup and cloud deployment on platforms like 

Render or AWS. 

 

9. Testing & Validation 

→Extensive testing was conducted on images, 

videos, online streams, and live webcam inputs to 

evaluate system performance. Evaluation focuses on 

detection accuracy, processing speed, playback 

smoothness, thread  
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stability, and correctness of CSV logs. YOLOv8 

delivers fast and accurate detection across all inputs. 

 

IV. IMPLEMENTATION 

 

The project was implemented in a phased approach 

to build a unified object detection system supporting 

images, videos, webcam, and YouTube streams. The 

components interact in a pipeline where the user 

submits input (image, video, webcam, or YouTube 

URL), the server processes the input using the 

YOLOv8 model, generates processed outputs 

(images/videos with bounding boxes), logs metadata 

to a CSV file, and returns the results back to the 

browser for visualization. 

 

 
Fig 2: Different Phases of Object Detection System 

 

Phase 1 — Requirement Analysis: Defined project 

scope, user goals, functional and non-functional 

requirements, and hardware suggestions. Key 

deliverable included requirements text and 

documentation. 

 

Phase 2 — Architecture & Design: Designed a 

modular architecture with Flask back end, YOLO 

inference, video processing pipeline, storage, and UI. 

Module boundaries and deployment strategy 

(Docker) were finalized. 

Phase 3 — Environment Setup: Configured 

reproducible environments with Python 

dependencies, Docker file, and optional docker-

compose setup to ensure seamless local and 

containerized execution. 

 

Phase 4 — Model Integration (Image): Integrated 

YOLOv8 for image detection with confidence 

threshold and generated annotated outputs saved for 

visualization. 

 

Phase 5 — Video & Live Stream Processing: 

Implemented robust video handling for file uploads, 

webcam, and YouTube streams (VOD and live) 

using FFmpeg and background processing. 

 

Phase 6 — Persistence & APIS: Detection metadata 

stored in CSV with REST endpoints for JSON 

retrieval and file download, ensuring easy access 

and traceability. 

 

Phase 7 — Front end & UX: Developed intuitive UI 

for uploads, live monitoring, and detection results 

viewing with responsive design and client-side 

status updates. 

 

Phase 8 — Testing & Validation: Performed unit 

and manual testing for all functionalities, including 

image, video, live streams, and API endpoints to 

ensure robustness. 

 

Phase 9 — CI/CD & Container Build: Automated 

Docker image builds and deployment using GitHub 

Actions, optimizing reproducibility and release 

efficiency. 

 

Phase 10 — Deployment & Operations: Deployed 

containerized application with persistent storage, 

GPU support, logging, and monitoring for reliable 

operation. 

 

Phase 11 — Hardening & Future Enhancements: 

Planned migration to a database, authentication, job 

queues, and tracking extensions to scale and 

production the system. 

 

V. RESULT 

 

A. Image Detection 

The system accurately identified objects in uploaded 

images using YOLOv8n. Output images 

(detected_<filename>.JPG) were generated, and 
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detected class names were logged into 

detection.CSV. High precision was observed for 

common objects such as persons, vehicles, and 

household items. Average processing time was less 

than 1 second per image. 

 

 
 

B. Video Detection 

Videos were processed frame-by-frame with YOLO 

inference. A first-frame preview was generated in 

1–2 seconds, while full video processing occurred in 

the background. Output videos were saved in .AVI 

and converted to browser-friendly .mp4 format. 

Detected objects per frame were logged with 

timestamps. Typical frame rates ranged from 20–30 

FPS depending on resolution. 

 

 
 

 

C. YouTube URL Detection 

YouTube videos and live streams were downloaded 

or recorded using YTdlp and FFMPEG. Every 10th 

frame was processed to reduce computation. Output 

videos with bounding boxes were generated in both 

standard and web.mp4 formats for smooth playback. 

This feature allows detection on online media 

sources. 

 

 
 

D. Webcam Stream Detection 

Real-time webcam detection produced live 

bounding boxes and MJPEG streamed frames with 

minimal lag. Continuous detection achieved 8–15 

FPS on CPU hardware, demonstrating suitability for 

surveillance applications. 

 

 
 

E. Detection Logging 

All detection across images, videos, YouTube, and 

webcam streams were logged in detection's.CSV, 

including: timestamp, source type, source name, 

frame number, detected class names, and object 

counts. The CSV enables further analytic, heat 

maps, and model evaluation. 
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VI. CONCLUSION 

 

The Smart View system successfully demonstrates a 

robust and versatile object detection platform built 

using YOLOv8, Flask, Open CV, and FFMPEG. 

The project achieves its goal of providing a unified 

interface for detecting objects in images, videos, 

webcam streams, and YouTube sources, making it 

suitable for multiple real-world applications such as 

surveillance, monitoring, and analytic. 

 

By combining real-time inference with intuitive 

visual outputs, the system offers both practicality 

and efficiency. The integration of background 

processing, automatic video conversion, and 

detection logging enhances usability and reliability. 

Overall, Smart View shows that advanced computer 

vision capabilities can be deployed effectively even 

on CPU-based environments, without requiring 

high-end GPU resources. The proposed architecture 

demonstrates that scalable and multi-source object 

detection systems can be effectively implemented 

using lightweight models and open-source 

frameworks. 
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