© JAN 2026 | IRE Journals | Volume 9 Issue 7 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I7-1713245

SmartView: Al-Based Object Detection System

C M SUMANA!, SUBANI D?, ALUR MUSKAN MAHEK?, N LAKSHMI* V ASHWINI®
!4sst Prof. Dept of CSE (Artificial Intelligence and Machine Learning)
2343 Students of Dept of CSE (Artificial Intelligence and Machine Learning)
Rao Bahadur Y Mahabaleswarappa Engineering college, Ballari, Karnataka, India.

Abstract - Recent advancements in computer vision have
enabled automated systems to identify and localize
multiple objects efficiently across diverse visual inputs.
This paper presents Smart-view, an Al-based multi-
source object detection system designed for both real-
time and offline visual analysis. The system integrates
the YOLOvS deep learning model with a Flask-based
web framework to support object detection from images,
prerecorded videos, live webcam streams, and online
video sources such as YouTube. Supporting tools
including Open CV and FFMPEG are employed for
frame acquisition, prepossessing and video conversion.
To enhance usability, computationally intensive tasks
are executed asynchronously, ensuring a responsive user
interface. Detected objects are visually annotated and
systematically logged in structured CSV format for
further analysis. The proposed system demonstrates that
efficient and scalable object detection can be achieved
using lightweight models on CPU-based environments.

Keywords: Object Detection, YOLOvS8, Computer Vision,
Flask, Real-Time Processing, AI Applications.

I. INTRODUCTION

Object detection is an essential capability in modern
computer vision systems, enabling automated
analysis of visual data across various application
domains. In this work, Smart View is introduced as
a unified Al-based object detection system designed
for practical deployment rather than theoretical
experimentation. The system supports multiple
visual input sources including images, prerecorded
videos, live webcam streams, and online video links
within a single processing framework Such multi-
source object detection frameworks are widely
adopted in modern computer vision applications
[12].

Smart View integrates the YOLOvS8 deep learning
model with a Flask-based web interface to provide
real-time and batch object detection through a
standard web browser. Multimedia processing tools
such as Open CV and FFMPEG are utilized to
handle frame capture, prepossessing and video
conversion. To improve usability, computationally

IRE 1713245

intensive video detection tasks are executed in the
background, ensuring that the user interface remains
responsive while detection results are generated and
stored for further analysis.

II.REVIEW OF LITERATURE

1. Joseph Redmon et al. Their work “YOLO: You
Only Look Once” explains a real-time single-stage
object detection method where objects are detected
in one pass.

2. Alexey Bochkovskiy et al. Offered their work
“YOLOv4” which improves both speed and
accuracy using optimized training strategies for
efficient object detection.

3.Tsung-Yi Lin et al. Presented their work “Focal
Loss for Dense Object Detection” which handles
class imbalance and improves the precision of
single-stage detectors.

4.Xizhou Zhu et al. Their work “Deep Feature
Flow” explains faster video processing by sharing
features across frames instead of doing full
inference every time.

5.Gary Bradski & Adrian Kaehler. Offered their
work “Learning Open CV” which provides practical
methods for image/video operations like frame
capture, re sizing, drawing, and video writing.

6.Ultralytics Team. Presented their work on
“YOLOVS8” which introduces improved architecture,
better training optimization, and faster inference,
making it suitable for real-time image and video
detection tasks used in this project.

III. SYSTEM ARCHTECTURE

The proposed Smart View system is designed as a
modular, web-based object detection platform that
integrates deep learning, video processing, and data
logging into a single application. The architecture

ICONIC RESEARCH AND ENGINEERING JOURNALS 63

© JAN 2026 | IRE Journals | Volume 9 Issue 7 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I7-1713245

follows a layered design, separating the presentation
layer (web interface), application logic layer (Flask
and processing modules), and Al/model layer
(YOLOVS), supported by auxiliary components for
media handling, logging, and deployment.

User / Client (Web Browser Ul)

!

Flask Web Server
(Request Handling)

v v A4

Input Processing

[Image]l Video J[Web Cam} ’ YouTube]

.

YOLOv8 Detection
+ OpenCV Processing

.

Detection Results
(Bounding Boxes & UI)

CSV Logging File
(Detection Records)

Fig 1: System Architecture

1. System Design & Architecture

— The system follows a modular architecture using
Flask for the web interface, YOLOvVS for detection,
Open CV and FFMPEG for media processing, multi
threading for background tasks, CSV logging for
analytic, and Docker for deployment. This design
ensures scalability, easy maintenance, and platform
independence.

2. Model Selection (YOLOVS)

— YOLOVS is selected due to its high detection
accuracy and real-time inference capability. The
lightweight YOLOv8-nano model is loaded once
during system startup, enabling fast and efficient
object detection for all incoming requests, including
live video streams and interactive visual inputs.

3. Input Handling

— The system supports four modes of input:

Image Upload — Image is saved, processed by
YOLOVS, and returned with bounding boxes. Video
Upload — Video is wuploaded and previewed

IRE 1713245

instantly; full processing runs in a background
thread. Webcam Stream — Live frames are captured
using Open CV and processed in real time.
YouTube Link — Videos are downloaded using YT-
dlp, frame-processed with YOLOVS, and returned as
browser-compatible output.

4. Frame Processing Workflow

— During processing, each video frame is re sized
to a resolution of 1280%720 and passed to the
YOLOVS model with a confidence threshold of 0.4.
Detected objects are annotated with bounding boxes
and class labels before being encoded for output
visualization.

5. Background Processing (Multi-threading)

— Multi-threaded background processing ensures
that long-running detection tasks do not block the
Flask web interface, allowing results to be displayed
smoothly after processing completes., which is
essential for processing live video streams and
interactive visual inputs. Flask remains responsive
during processing, and results are displayed
automatically after completion, ensuring smooth
user interaction.

6. Detection Logging (CSV Analytic)

—All detection outputs are saved in
static/detection.CSV with details such as timestamp,
input type, file/lURL, frame number, detected
objects, and object counts, enabling future analysis
and comparison.

7. Web Interface (Flask)

—Flask manages file uploads, form handling,
webcam streaming, displaying processed media, and
presenting detection logs. The interface is designed
to be simple, responsive, and user-friendly.

8. Deployment Using Docker

—Docker containerizes the entire system,
eliminating dependency issues and enabling easy
setup and cloud deployment on platforms like

Render or AWS.

9. Testing & Validation

—Extensive testing was conducted on images,
videos, online streams, and live webcam inputs to
evaluate system performance. Evaluation focuses on
detection accuracy, processing speed, playback
smoothness, thread

ICONIC RESEARCH AND ENGINEERING JOURNALS 64

© JAN 2026 | IRE Journals | Volume 9 Issue 7 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I7-1713245

stability, and correctness of CSV logs. YOLOVS
delivers fast and accurate detection across all inputs.

IV. IMPLEMENTATION

The project was implemented in a phased approach
to build a unified object detection system supporting
images, videos, webcam, and YouTube streams. The
components interact in a pipeline where the user
submits input (image, video, webcam, or YouTube
URL), the server processes the input using the
YOLOv8 model, generates processed outputs
(images/videos with bounding boxes), logs metadata
to a CSV file, and returns the results back to the
browser for visualization.

e

’ I ;a Project Development Phases — SMARTVIEW

r
Phase 1- Defined requirements, scope, objectives,

functional, non-functiond constraints
\ g— -

v

“ Phase 2 - Designed system architecture, data flow, and

components

v

Phase 3 - Configured environment, dependencies, Docker,
Flask setup

v —

[Phase 4 - integrated YOLOv8 model with confidence threshold]

v
T B
% Phase 5 - Implemented image, video, webcam, YouTube detecbcr]‘

v
x B
|_—'; Phase 6 - Stored detections using CSV logging and APis J

¥ ==
B Phase 7 - Developed Ul for uploads, monitoring, results

v =
@ Phase 8 - Tested system for accuracy, performance, robustness
v

[& Phase 9 - Built CI/CD pipeline, Dockerized deployment workflows

—d

= — —
| Phase 10 - Menitored deployment, ensured stable operations
-0
(¢
v

@ Phase 11 - Planned enhancements for scalability, trackng oprmzanq

Fig 2: Different Phases of Object Detection System

Phase 1 — Requirement Analysis: Defined project
scope, user goals, functional and non-functional
requirements, and hardware suggestions. Key
deliverable included requirements text and
documentation.

Phase 2 — Architecture & Design: Designed a
modular architecture with Flask back end, YOLO

inference, video processing pipeline, storage, and UL

Module boundaries and deployment strategy
(Docker) were finalized.

IRE 1713245

Phase 3 — Environment Setup: Configured
reproducible environments with Python
dependencies, Docker file, and optional docker-
compose setup to ensure seamless local and
containerized execution.

Phase 4 — Model Integration (Image): Integrated
YOLOv8 for image detection with confidence
threshold and generated annotated outputs saved for
visualization.

Phase 5 — Video & Live Stream Processing:
Implemented robust video handling for file uploads,
webcam, and YouTube streams (VOD and live)
using FFmpeg and background processing.

Phase 6 — Persistence & APIS: Detection metadata
stored in CSV with REST endpoints for JSON
retrieval and file download, ensuring easy access
and traceability.

Phase 7 — Front end & UX: Developed intuitive Ul
for uploads, live monitoring, and detection results
viewing with responsive design and client-side
status updates.

Phase 8 — Testing & Validation: Performed unit
and manual testing for all functionalities, including
image, video, live streams, and API endpoints to
ensure robustness.

Phase 9 — CI/CD & Container Build: Automated
Docker image builds and deployment using GitHub
Actions, optimizing reproducibility and release
efficiency.

Phase 10 — Deployment & Operations: Deployed
containerized application with persistent storage,
GPU support, logging, and monitoring for reliable
operation.

Phase 11 — Hardening & Future Enhancements:
Planned migration to a database, authentication, job
queues, and tracking extensions to scale and
production the system.

V. RESULT

A. Image Detection

The system accurately identified objects in uploaded
images using YOLOv8n. Output images
(detected <filename>.JPG) were generated, and

ICONIC RESEARCH AND ENGINEERING JOURNALS 65

© JAN 2026 | IRE Journals | Volume 9 Issue 7 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I7-1713245

detected class names were logged into
detection.CSV. High precision was observed for
common objects such as persons, vehicles, and
household items. Average processing time was less
than 1 second per image.

Image Detection

B. Video Detection

Videos were processed frame-by-frame with YOLO
inference. A first-frame preview was generated in
1-2 seconds, while full video processing occurred in
the background. Output videos were saved in .AVI
and converted to browser-friendly .mp4 format.
Detected objects per frame were logged with
timestamps. Typical frame rates ranged from 20-30
FPS depending on resolution.

Video Detection

Choosa Fie | Ha fi chosen

IRE 1713245

C. YouTube URL Detection

YouTube videos and live streams were downloaded
or recorded using YTdlp and FFMPEG. Every 10th
frame was processed to reduce computation. Output
videos with bounding boxes were generated in both
standard and web.mp4 formats for smooth playback.
This feature allows detection on online media
sources.

YouTube URL Detection

hifpe My a0 HGT = BN T 550

= B

D. Webcam Stream Detection

Real-time webcam detection produced live
bounding boxes and MJPEG streamed frames with
minimal lag. Continuous detection achieved 8-15
FPS on CPU hardware, demonstrating suitability for
surveillance applications.

Webcam Detection

E. Detection Logging

All detection across images, videos, YouTube, and
webcam streams were logged in detection's.CSV,
including: timestamp, source type, source name,
frame number, detected class names, and object
counts. The CSV enables further analytic, heat
maps, and model evaluation.

ICONIC RESEARCH AND ENGINEERING JOURNALS 66

© JAN 2026 | IRE Journals | Volume 9 Issue 7 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV917-1713245

Cowrdeusd Disteetiors CEV Wiew Detections

Image Detection

Choosa File | Mo e choees

Original mage Detected image

E ;‘:I. ‘i-::i::"

frae Deltaf Hares Coury

Testnp Soares e Name

koo e 005 Ve,] e]
% 2 83 !

VI. CONCLUSION

The Smart View system successfully demonstrates a
robust and versatile object detection platform built
using YOLOvVS, Flask, Open CV, and FFMPEG.
The project achieves its goal of providing a unified
interface for detecting objects in images, videos,
webcam streams, and YouTube sources, making it
suitable for multiple real-world applications such as
surveillance, monitoring, and analytic.

By combining real-time inference with intuitive
visual outputs, the system offers both practicality
and efficiency. The integration of background
processing, automatic video conversion, and
detection logging enhances usability and reliability.

Overall, Smart View shows that advanced computer
vision capabilities can be deployed effectively even
on CPU-based environments, without requiring
high-end GPU resources. The proposed architecture
demonstrates that scalable and multi-source object

IRE 1713245

detection systems can be effectively implemented
using lightweight models and
frameworks.

open-source

REFERENCES

[1] Ultralytics, “YOLOvVS8: Next-Generation Object
Detection,” Ultralytics
Documentation.[Online].Available:
https://docs.ultralytics.com/

[2] Ultralytics “Ultralytics/ultralytics — YOLOVS8
Official GitHub
Repository,”GitHub.[Online].Available:
https://github.com/ultralytics/ultralytics

[3] PyTorch Foundation, “PyTorch
Documentation”, PyTorch.org. [Online].
Available: https://pytorch.org/

[4] G. Bradski, “The Open CV Library,” Open CV
Documentation. [Online]. Available:
https://docs.opencv.org/

[5] A. Ronacher, “Flask: A Python Micro
framework,” Flask
Documentation.[Online].Available:
https://flask.palletsprojects.com/

[6] FFMPEG Team, “FFMPEG Documentation,”
FFmpeg.org. [Online]. Available:
https://ffmpeg.org/documentation.html

[7] yt-dlp Developers, “yt-dlp: A Feature-Rich
YouTube Downloader,” GitHub. [Online].
Available: https://github.com/yt-dlp/yt-dlp

[8] C. R. Harrisetal.,, “Array programming with
Numpy,” Numpy Documentation. [Online].
Available: https:/numpy.org/doc/

[9] Python Software Foundation, “Python 3
Documentation,” Python.org. [Online].
Available: https://docs.python.org/

[10] Docker Inc., “Docker Documentation,” Docker
Docs. [Online]. Available:
https://docs.docker.com/

[11]Pallets Projects, “Werkzeug & Jinja2
Documentation,”
PalletsProjects.com.[Online].Available:
https://palletsprojects.com/

[12]J. Redmon, S. Divvala, R. Girshick, and A.
Farhadi, “You Only Look Once: Unified, Real-
Time Object Detection,”
arXiv:1506.02640,2015.[Online].Available:
https://arxiv.org/abs/1506.02640

[13]Apple Inc., “HTTP Live Streaming (HLS)
Specification,” Apple Developer
Documentation. [Online]. Available:
https://developer.apple.com/streaming/

ICONIC RESEARCH AND ENGINEERING JOURNALS 67

https://docs.ultralytics.com/
https://github.com/ultralytics/ultralytics
https://pytorch.org/
https://docs.opencv.org/
https://flask.palletsprojects.com/
https://ffmpeg.org/documentation.html
https://github.com/yt-dlp/yt-dlp
https://numpy.org/doc/
https://docs.python.org/
https://docs.docker.com/
https://palletsprojects.com/
https://arxiv.org/abs/1506.02640
https://developer.apple.com/streaming/

