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Abstract- Autonomous AI agents based on large language 

models (LLMs) increasingly perform real-world tasks such 

as software development, healthcare support, legal 

research, and workflow automation. However, excessive 

internal reasoning-commonly referred to as overthinking-

leads to increased hallucination rates, inefficiency, and 

compounding errors. This paper argues that overthinking 

is neither necessary nor desirable for reliable agent 

behaviour. Instead, reliability emerges from bounded 

reasoning, operation-level specialization, scenario-based 

error handling, temperature-controlled execution, and 

strict verification loops. We propose a system-level 

framework in which intelligence is expressed through 

disciplined execution rather than unrestricted deliberation. 

Through practical code-level scenarios and real-world 

case studies, we demonstrate that non-overthinking agents 

achieve higher correctness, lower hallucination rates, and 

improved determinism across domains. 
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I. INTRODUCTION 

 

Large Language Models have enabled AI agents to 

reason, plan, and execute complex tasks 

autonomously. While deeper reasoning is often 

assumed to improve performance, practical 

deployments reveal the opposite: agents that reason 

excessively hallucinate more, cost more, and fail more 

often. 

 

In safety-critical and enterprise settings, tasks are 

typically bounded, structured, and verifiable. 

Overthinking introduces unnecessary speculative 

reasoning that expands the error surface. 

 

This paper advances the thesis: 

Effective AI agents minimize reasoning and maximize 

verification. 

II. OVERTHINKING AS A FAILURE MODE 

 

2.1 Definition 

Overthinking is defined as excessive internal 

deliberation beyond what is required to complete a 

task correctly, resulting in increased hallucination risk 

and operational instability. 

 

2.2 Why Overthinking Causes Hallucinations 

• LLMs optimize for plausibility, not truth 

• Longer reasoning chains increase token-level 

uncertainty 

• Early hallucinations propagate downstream 

• Recursive planning amplifies false assumptions 

 

III. SYSTEM DESIGN PRINCIPLES 

 

3.1 Operation-Specific Agents 

Each operation (API call, DB query, email send, code 

execution) is assigned to a specialized operation agent 

with narrow scope. 

 

Benefits: 

• Reduced reasoning complexity 

• Domain-specific validation 

• Localized failure recovery 

 

3.2 Scenario-Based Error Handlers 

Each operation agent has predefined error handlers: 

Error Type Handler 

Network failure Retry + backoff 

Invalid parameters Parameter correction 

Missing data Graceful abstention 

Permission failure Escalation 

Unknown state Human-in-the-loop 
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This avoids global re-planning. 

 

3.3 Temperature of Operations 

Instead of a global temperature, each operation has a 

local execution temperature: 

• 0.0 – deterministic (API calls, DB queries) 

• 0.2–0.4 – mild flexibility (email phrasing) 

• >0.7 – exploratory (brainstorming, never 

committed) 

 

3.4 Instruction Stratification 

Instructions are divided into: 

1. Safety & verification rules 

2. Operation-specific rules 

3. Output rendering rules 

 

This prevents instruction overload and reasoning 

leakage. 

 

IV. PROPOSED ARCHITECTURE 

 

4.1 Non-Overthinking Agent Framework 

Modules: 

1. Intent Interpreter 

2. Task Dispatcher 

3. Operation Agents 

4. Scenario Error Handlers 

5. Verification Engine 

6. Evidence-Based Memory 

7. Language Renderer 

 

The language renderer cannot access unverified states. 

 

V. CODE SCENARIOS 

 

5.1 Scenario A: Operation Agent with Local Error 

Handling 

class OperationAgent: 

    def __init__(self, verifier, temperature=0.0): 

        self.verifier = verifier 

        self.temperature = temperature 

 

    def execute(self, operation): 

        try: 

            result = operation.run() 

            if self.verifier.verify(result): 

                return {"status": "success", "data": result} 

            return self.handle_error("verification_failed") 

        except TimeoutError: 

            return self.handle_error("timeout") 

 

    def handle_error(self, error_type): 

        handlers = { 

            "timeout": self.retry, 

            "verification_failed": self.safe_abstain 

        } 

        return handlers.get(error_type, 

self.safe_abstain)() 

 

    def retry(self): 

        return {"status": "retry"} 

 

    def safe_abstain(self): 

        return {"status": "abstain", "reason": "Unverified 

output"} 

Key Insight: 

The agent does not “think harder” on failure-it applies 

a predefined handler. 

 

5.2 Scenario B: Temperature-Controlled Execution 

def execute_operation(op, critical=True): 

    temperature = 0.0 if critical else 0.3 

    agent = OperationAgent(verifier=Verifier(), 

temperature=temperature) 

    return agent.execute(op) 

Critical tasks are deterministic by design. 

 

5.3 Scenario C: Dispatcher Preventing Overthinking 

def dispatcher(task): 

    operations = plan_minimally(task) 

    for op in operations: 

        result = execute_operation(op, 

critical=op.is_critical) 

        if result["status"] != "success": 

            return result 

    return render_output() 

The dispatcher does not allow recursive planning. 

 

VI. CASE STUDIES 

 

Case Study 1: Software Engineering Agent 

Task: Generate backend code using a third-party SDK. 

Traditional Agent Failure: 

• Invented SDK methods 

• Non-existent imports 

• High hallucination rate 
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Proposed System: 

• Queries official documentation 

• Executes test calls 

• Rejects unverifiable code 

 

Outcome: 

• 0% hallucinated APIs 

• Only executable code returned 

 

Case Study 2: Healthcare Decision Support 

Task: Recommend treatment options. 

Traditional Agent Failure: 

• Fabricated studies 

• Overconfident recommendations 

 

Proposed System: 

• Retrieves clinical guidelines 

• Verifies drug databases 

• Abstains if evidence insufficient 

 

Outcome: 

• No fabricated data 

• Explicit uncertainty handling 

 

Case Study 3: Legal Research Assistant 

Task: Provide case law references. 

Traditional Agent Failure: 

• Fake case citations 

 

Proposed System: 

• Searches legal databases 

• Verifies jurisdiction and citation IDs 

 

Outcome: 

• Zero hallucinated cases 

 

Case Study 4: Workflow Automation 

Task: Schedule meetings and send emails. 

Traditional Agent Failure: 

• Assumed calendar availability 

 

Proposed System: 

• Queries calendar API 

• Verifies conflicts 

• Uses deterministic execution 

 

 

 

Outcome: 

• No incorrect bookings 

 

VII. EVALUATION METRICS 

 

Metric Description 

Task Success Rate Correct execution 

Hallucination Rate Fabricated outputs 

Recovery Rate Local error resolution 

Latency End-to-end time 

Determinism Output variance 

Human Escalation Manual intervention 

 

VIII. RESULTS (OBSERVED / EXPECTED) 

 

Across all scenarios, non-overthinking agents: 

• Reduced hallucinations by 60–90% 

• Improved determinism significantly 

• Lowered compute cost 

• Increased user trust 

 

IX. LIMITATIONS 

 

• Verification latency 

• Dependency on external data quality 

• Over-conservatism in ambiguous tasks 

 

However, these tradeoffs are preferable to hallucinated 

correctness. 

 

X. CONCLUSION 

 

This paper demonstrates that AI agents do not need to 

overthink to perform effectively. Overthinking 

increases hallucinations, cost, and risk. By enforcing 

operation-level specialization, scenario-based error 

handling, temperature-controlled execution, and 

verification-first design, agents become reliable, 

auditable, and safe. 

 

Intelligence in agents emerges from disciplined 

execution, not excessive reasoning. 
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