© JAN 2026 | IRE Journals | Volume 9 Issue 7 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I7-1713332

Why Al Agents Do Not Need to Overthink
A System-Level Framework for Error-Resilient,
Hallucination-Resistant Task Execution

AYUSH MAURYA
Al Researcher, TenseAi, India

Abstract- Autonomous Al agents based on large language
models (LLMs) increasingly perform real-world tasks such
as software development, healthcare support, legal
research, and workflow automation. However, excessive
internal reasoning-commonly referred to as overthinking-
leads to increased hallucination rates, inefficiency, and
compounding errors. This paper argues that overthinking
is neither necessary nor desirable for reliable agent
behaviour. Instead, reliability emerges from bounded
reasoning, operation-level specialization, scenario-based
error handling, temperature-controlled execution, and
strict verification loops. We propose a system-level
framework in which intelligence is expressed through
disciplined execution rather than unrestricted deliberation.
Through practical code-level scenarios and real-world
case studies, we demonstrate that non-overthinking agents
achieve higher correctness, lower hallucination rates, and
improved determinism across domains.
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L INTRODUCTION

Large Language Models have enabled Al agents to
reason, plan, and execute complex tasks
autonomously. While deeper reasoning is often
assumed to improve performance, practical
deployments reveal the opposite: agents that reason
excessively hallucinate more, cost more, and fail more
often.

In safety-critical and enterprise settings, tasks are
typically bounded, structured, and verifiable.
Overthinking introduces unnecessary speculative
reasoning that expands the error surface.

This paper advances the thesis:

Effective Al agents minimize reasoning and maximize
verification.
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II. OVERTHINKING AS A FAILURE MODE

2.1 Definition

Overthinking is defined as excessive internal
deliberation beyond what is required to complete a
task correctly, resulting in increased hallucination risk
and operational instability.

2.2 Why Overthinking Causes Hallucinations

e LLMs optimize for plausibility, not truth

e Longer reasoning chains increase token-level
uncertainty

o Early hallucinations propagate downstream

e Recursive planning amplifies false assumptions

III.  SYSTEM DESIGN PRINCIPLES

3.1 Operation-Specific Agents

Each operation (API call, DB query, email send, code
execution) is assigned to a specialized operation agent
with narrow scope.

Benefits:

e Reduced reasoning complexity
e Domain-specific validation

e Localized failure recovery

3.2 Scenario-Based Error Handlers
Each operation agent has predefined error handlers:
Error Type Handler
Network failure  Retry + backoff
Invalid parameters Parameter correction
Missing data Graceful abstention
Permission failure Escalation

Unknown state Human-in-the-loop
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This avoids global re-planning.

3.3 Temperature of Operations

Instead of a global temperature, each operation has a

local execution temperature:

e 0.0 — deterministic (API calls, DB queries)

e 0.2-0.4 — mild flexibility (email phrasing)

e >0.7 — exploratory (brainstorming, never
committed)

3.4 Instruction Stratification
Instructions are divided into:
1. Safety & verification rules
2. Operation-specific rules
3. Output rendering rules

This prevents instruction overload and reasoning
leakage.

IV.  PROPOSED ARCHITECTURE

4.1 Non-Overthinking Agent Framework
Modules:

Intent Interpreter

Task Dispatcher

Operation Agents

Scenario Error Handlers

Verification Engine

Evidence-Based Memory

Language Renderer

Nk W=

The language renderer cannot access unverified states.
V. CODE SCENARIOS

5.1 Scenario A: Operation Agent with Local Error
Handling
class OperationAgent:
def init (self, verifier, temperature=0.0):
self.verifier = verifier
self.temperature = temperature

def execute(self, operation):
try:
result = operation.run()
if self.verifier.verify(result):

return {"status": "success", "data": result}
return self.handle error("verification failed")
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except TimeoutError:
return self.handle error("timeout")

def handle error(self, error type):
handlers = {
"timeout": self.retry,
"verification_failed": self.safe abstain
}
return handlers.get(error_type,
self.safe abstain)()

def retry(self):
return {"status": "retry"}

def safe_abstain(self):
return {"status": "abstain", "reason": "Unverified
output"}
Key Insight:
The agent does not “think harder” on failure-it applies

a predefined handler.

5.2 Scenario B: Temperature-Controlled Execution
def execute operation(op, critical=True):

temperature = 0.0 if critical else 0.3

agent =  OperationAgent(verifier=Verifier(),
temperature=temperature)

return agent.execute(op)
Critical tasks are deterministic by design.

5.3 Scenario C: Dispatcher Preventing Overthinking
def dispatcher(task):
operations = plan_minimally(task)
for op in operations:
result = execute_operation(op,
critical=op.is_critical)
if result["status"] != "success":
return result
return render_output()

The dispatcher does not allow recursive planning.
VI.  CASE STUDIES

Case Study 1: Software Engineering Agent

Task: Generate backend code using a third-party SDK.
Traditional Agent Failure:

e Invented SDK methods

e Non-existent imports

e High hallucination rate
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Proposed System:

e Queries official documentation
e Executes test calls

e Rejects unverifiable code

Outcome:
e 0% hallucinated APIs
¢ Only executable code returned

Case Study 2: Healthcare Decision Support
Task: Recommend treatment options.
Traditional Agent Failure:

e Fabricated studies

e Overconfident recommendations

Proposed System:

e Retrieves clinical guidelines

e Verifies drug databases

e Abstains if evidence insufficient

Outcome:
e No fabricated data
e Explicit uncertainty handling

Case Study 3: Legal Research Assistant
Task: Provide case law references.
Traditional Agent Failure:

e Fake case citations

Proposed System:
e Searches legal databases
e Verifies jurisdiction and citation IDs

Outcome:
e Zero hallucinated cases

Case Study 4: Workflow Automation
Task: Schedule meetings and send emails.
Traditional Agent Failure:

e Assumed calendar availability

Proposed System:

e Queries calendar API

e Verifies conflicts

e Uses deterministic execution
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Outcome:
¢ No incorrect bookings

VII. EVALUATION METRICS

Metric Description

Task Success Rate Correct execution
Hallucination Rate Fabricated outputs
Recovery Rate Local error resolution
Latency End-to-end time
Determinism Output variance

Human Escalation Manual intervention

VII. RESULTS (OBSERVED / EXPECTED)

Across all scenarios, non-overthinking agents:
e Reduced hallucinations by 60—90%

e Improved determinism significantly

e Lowered compute cost

e Increased user trust

IX. LIMITATIONS

e Verification latency
e Dependency on external data quality
e Over-conservatism in ambiguous tasks

However, these tradeoffs are preferable to hallucinated
correctness.

X. CONCLUSION

This paper demonstrates that Al agents do not need to
overthink to perform effectively. Overthinking
increases hallucinations, cost, and risk. By enforcing
operation-level specialization, scenario-based error
handling, temperature-controlled execution, and
verification-first design, agents become reliable,
auditable, and safe.

Intelligence in agents emerges from disciplined
execution, not excessive reasoning.
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