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Abstract - The fuzzy multi-index transportation
assignment problem, also known as FMITAP, is an
extension of traditional assignment and transportation
models that was developed with the purpose of managing
uncertainty in situations that involve as many dimensions
as possible. As an illustration, it is utilized for the purpose
of assigning resources across a wide variety of origins,
destinations, modes, and commodities that exist with
ambiguous pricing. The purpose of this research is to
develop a mathematical framework for successfully
solving FMITAP. Both the expenses and the limits that
they reflect are represented as triangular fuzzy numbers,
which are included into the system. There is a review of
the existing literature, an overview of the assumptions
and notations, the development of a succinct equivalent
model through the utilization of a ranking function, and
the presentation of optimization methodologies. The
outcomes of the numerical analysis reveal that the
strategy is effective in lowering the total expenses that are
connected with fuzzy assignments. In circumstances
when time and money are two of the objectives, the
method provides solutions that are Pareto-optimal. Time
and money are both examples of objectives. It is because
of this endeavour that fuzzy optimization is being
developed further in the field of study pertaining to
logistics and operations.

Keywords - Fuzzy assignment problem, multi-index
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L INTRODUCTION

Operations research plays a pivotal role in supporting
optimal decision-making in complex logistical and
supply chain systems. Among the most widely
studied optimization problems in this domain are the
assignment problem and the transportation problem.
The classical assignment problem deals with the
optimal allocation of tasks to agents in such a way
that the total cost is minimized, or total profit is
maximized, assuming that each task is assigned to
exactly one agent and vice versa. On the other hand,
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the transportation problem focuses on the optimal
distribution of goods from multiple supply points to
multiple demand points while satisfying supply—
demand constraints at minimum transportation cost.
With the increasing complexity of modern supply
chains, these traditional models often prove
insufficient. Real-world logistics systems typically
involve multiple interacting dimensions, such as
different types of commodities, transportation
modes, time periods, warehouses, and destinations.
To address this complexity, researchers have
proposed the multi-index transportation assignment
problem (MITAP), which integrates the features of
both assignment and transportation problems while
introducing additional indices. This extended
framework enables the modeling of more realistic
decision environments, including multimodal
transportation networks and multi-commodity flows.
Despite their modeling flexibility, most classical and
multi-index transportation assignment models rely on
the assumption that all parameters—such as
transportation costs, handling costs, delivery times,
and resource capacities—are known with certainty.
In practice, however, such parameters are rarely
precise. Transportation costs may fluctuate due to
fuel price variations, labor charges, or policy
changes, while delivery times and operational
efficiencies are often affected by unpredictable
factors such as traffic congestion, weather conditions,
or equipment reliability. These sources of vagueness
and imprecision make deterministic modeling
approaches inadequate for capturing real-world
decision-making environments. To overcome these
limitations, fuzzy set theory, introduced by Zadeh
(1965), has been widely adopted as an effective tool
for modeling uncertainty arising from imprecise or
linguistic information. Fuzzy logic allows decision-
makers to represent uncertain parameters using fuzzy
numbers rather than fixed values, thereby providing
greater flexibility and realism. Among various forms
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of fuzzy numbers, triangular fuzzy numbers are
particularly popular due to their simplicity, ease of
interpretation, and computational efficiency. They
are well suited for representing expert judgments and
approximate cost estimates commonly encountered
in transportation and logistics planning.

This paper proposes a Fuzzy Multi-Index
Transportation Assignment Problem (FMITAP) in
which key parameters—specifically transportation
and assignment costs—are modeled as triangular
fuzzy numbers. The objective is to minimize the total
fuzzy assignment cost subject to supply, demand, and
assignment constraints under a fuzzy decision
environment. The proposed model extends classical
transportation and assignment formulations by
incorporating multiple indices and fuzzy cost
structures, thereby enhancing its applicability to
complex and uncertain supply chain systems.

IL. LITERATURE REVIEW

The theory of fuzzy sets was first introduced by [1],
who proposed a mathematical framework to handle
vagueness and imprecision inherent in real-world
decision-making problems. This seminal work laid
the foundation for fuzzy logic by allowing partial
membership of elements in sets, thereby extending
classical binary logic. The applicability of fuzzy sets
to decision sciences was further strengthened by
Bellman and [2], who developed a decision-making
framework under fuzzy environments, integrating
goals and constraints through fuzzy logic. Their work
is considered a cornerstone in fuzzy optimization and
management science. The extension of fuzzy theory
to mathematical programming was pioneered by [3],
who formulated fuzzy linear programming with
multiple  objective approach
transformed fuzzy goals into membership functions
and provided a systematic method to obtain
compromise solutions. Later, [4] comprehensively
presented fuzzy mathematical models applicable to
engineering and management science, offering

functions.  His

theoretical foundations as well as practical modeling
techniques. Similarly, [5] provided a rigorous
exposition of fuzzy set theory and its applications,
which has been extensively cited in fuzzy
optimization and operations research literature. The
application of fuzzy concepts to transportation
problems began with [6], who introduced the notion
of optimality in transportation problems with fuzzy
cost coefficients. They emphasized ranking fuzzy
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numbers to determine  optimal  solutions.
Subsequently, [7] investigated the computational
complexity of fuzzy transportation problems,
highlighting the increased difficulty compared to
their crisp counterparts and motivating the
development of efficient solution methods.
Evolutionary ~ computation  techniques  were
introduced by [8], who solved fuzzy solid
transportation problems using genetic algorithms.
Their work demonstrated the effectiveness of
evolutionary algorithms in handling fuzzy and large-
scale transportation problems. In a related
contribution, [9] proposed three models of fuzzy
integer linear programming, which have been widely
applied to discrete transportation and assignment
problems.  The algorithmic
foundations of genetic algorithms for optimization
were further detailed by [10], whose work has
influenced numerous fuzzy optimization studies. A

theoretical and

fully fuzzy linear programming framework was
proposed by [11], who developed a new method for
solving problems where all parameters are
represented as fuzzy numbers. Their approach
improved computational efficiency and solution
interpretability. Similarly, [12] proposed a novel
solution approach for fuzzy transportation problems
using ranking and defuzzification techniques,
offering improved accuracy over traditional methods.
Fuzzy assignment problems were addressed by [13],
who applied minimum-based ranking methods to
obtain optimal solutions. Their work highlighted the
importance of ranking techniques in fuzzy decision-
making. More recently, [14] studied a fuzzy bi-
objective multi-index fixed charge transportation
problem, employing ranking functions to handle
multiple conflicting objectives, thus extending fuzzy
transportation models to more realistic logistics
scenarios. Multi-objective fuzzy transportation
problems have been extensively studied by [15], who
applied fuzzy programming techniques to handle
multiple objectives simultaneously. Their approach
provided compromise solutions that balance cost,
time, and other performance measures. Similarly,
[16] proposed a new methodology for solving fuzzy
transportation problems, emphasizing computational
simplicity and robustness. A related study by [17]
introduced an alternative approach for multi-
objective transportation problems with fuzzy
parameters, demonstrating its effectiveness through
numerical examples. Ranking of fuzzy numbers plays
a crucial role in fuzzy optimization. [18] proposed a
ratio ranking method for triangular intuitionistic
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fuzzy numbers and demonstrated its application in
decision-making problems. Uncertainty in supply
and demand was explicitly considered by [19], who
formulated a multi-objective fuzzy transportation
problem incorporating fuzzy supply and demand
constraints, providing solutions applicable to supply
chain management. Fully fuzzy transportation
problems were also investigated by [20], who
proposed a simplified algorithmic approach that
reduced computational burden. The extension
principle-based approach for solving fuzzy
transportation problems was introduced by [21],
offering a mathematically rigorous method to derive
fuzzy optimal solutions. Duality theory in fuzzy
transportation was later explored by [22], who
developed a duality-based solution framework,
enriching the theoretical understanding of fuzzy
transportation ~ models.  Fuzzy  programming
techniques were further applied by [23] to solve
multi-objective  fuzzy transportation problems,
demonstrating the effectiveness of fuzzy goal
programming. Reliability evaluation using triangular
fuzzy numbers was studied by [24], which, although
not directly a transportation problem, contributed
significantly to fuzzy modeling techniques used in
logistics and system analysis. In recent developments
. [25] integrated data envelopment analysis (DEA)
with fuzzy transportation models to evaluate
efficiency and optimize transportation decisions
simultaneously. This hybrid approach reflects the
current trend toward combining fuzzy optimization
with performance evaluation tools to address
complex real-world decision-making problems.

Assumptions

e All supplies, demands, capacities, and
quantities are positive integers or fuzzy
numbers satisfying balance conditions.

e Costs (variable and fixed) and times are
non-negative triangular fuzzy numbers
(TFNs) of the form. @ = (a!, a™, a*) where
(al <a™ < a¥).

e  The problem is balanced: total fuzzy supply
equals total fuzzy demand across all indices.

e Assignment is one-to-one in the core but
extended to multiple indices for
transportation modes and commodities.

e Binary decisions for route usage introduce
non-linearity via fixed charges.

e  Fuzzy parameters are independent, and no
correlations exist between indices.
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e  The environment is static, with no dynamic
changes during the assignment.

Notation
e i=l...m: Index for origins with fuzzy
supply &.
e j=l...n: Index for destinations with fuzzy
demand BVJ

e k=1...,p: Index for transportation modes
with fuzzy capacity Y.

e |=1,...,q: Index for commodities with fuzzy
quantity ;.

e  Cijx: Fuzzy variable cost for assigning
commodity | from origin iii to destination j
via mode k (TFN).

. fijkl: Fuzzy fixed cost for using the route
(TFN).

e £y Fuzzy transportation time (TFN).

® X Decision variable: amount assigned
along the route (non-negative real).

® Yk Binary variable: 1 if route is used
(Xijr1 > 0), 0 otherwise.

e R (d): Ranking function for TFN, e.g., R

o at+2aM4at
(a):T

e Z: Total fuzzy cost objective.
e T: Fuzzy time objective (e.g., maximum
time).

Mathematical Model
The FMITAP is formulated as a bi-objective fuzzy
optimization problem:
Minimize Z =% j 11(Eijir @ Xijia D fijiaVijict)
Minimize T = Max {&;x; | ;s > 0}
Subject to:

1. Fuzzy Supply: ¥ j ki Xijr = @,V i

2. Fuzzy Demand: };  j X;jx = Ej,vj

3. Fuzzy Capacity ¥ j; Xijit = ViV k

4. ikl Xijir = 0¥ 1

5. Linkage: x;ji; < My;jr,, Where M is a large

number; Yijki € {0,1}

6. Non-negativity: x;j; = 0

7. BalanceZ(xvl=Z[§'J =3Y,=%0,=0
To solve, convert to crisp using Z(.):
Minimize Z =Y; ; . 1( & (Cijia) Xijir + R (Fijia)
Vijkt)
Minimize T = Max {2 (fiju1) | Xijui>0}
The model is NP-hard due to non-linearity, solved
via decomposition: first solve relaxed variable-cost
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problem, then incorporate fixed costs, and generate e f e =( fi}k, fﬁk, fgk)

Pareto front for bi-objectives. — fuzzy fixed route cost

e — 1 2 3
otk = (tijro tijr tijk)

Proper Mathematical Model of FMITAP —» fuzzy transportation time

. e S;: fuzzy supply at origin i
Indices ~ L
. - e D;: fuzzy demand at destination j
e [=12,..,m: origins 7 f  of mode k

N .
e j=1,2,..,n: destinations ~k-fuZZY capasl y Of mode dit 1
N .
e [k =1,2,..,p: transportation modes Qu: fuzzy quantity of commodity
e [ =1,2,..,q: commodities Decision Variables
. iy = 0 tity shi
Parameters (Triangular Fuzzy Numbers — TFNs) * ikt quantity shipped

~ _ 1 .2 3 o vk €{0,1}: route usage variable
* G = (Cijrw Cijrw Cijrr) J ’

— fuzzy variable transportation cost
Fuzzy Bi-Objective Model

Objective 1: Minimize Total Fuzzy Cost

min Z; = E E z Cijrt Xiji + E E Zfijk Yiji
. . . . J *
i J 2

Objective 2: Minimize Maximum Transportation Crisp Conversion Using Ranking Function
Time
min Z, = max {&;j | y;j = 1} Using ranking function for TFN:
R(a,b,c) a+4b+c
a; ’ C)=——"
Constraints 6
Supply constraint Converted objectives:

Zj,k,l Xiji = SiVi _ ~ B
min Z; = ZR(Cijkl)xijkl + ZR(ﬁjk)yijk

Demand constraint min Z, = max {R(t;;)}

Z Xijk = DjVJj This produces a crisp mixed-integer programming
bl problem.

Numerical Example

Capacity constraint Problem Size

Z Xij < K, Vk e  Origins: m=2
Ljl e  Destinations: n=2
e Modes: p=1
Commodity constraint e Commodities: ¢ = 1
Z Xijia = Q V1 Fuzzy Data
i1k Supply

e S =(18,20,22)
e §,=1(2830,32)
Demand

e D, =(20,22,24)
e D, =(26,28,30)

Linking constraint
Xjjkl < Myiji
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Table -1 for Variable Costs &;;

Route TFN Ranking
1—-1 (8,10,12) 10
1-2 (6,8,10) 8
2 -1 (7,9,11) 9
22 (5,7,9) 7
1 -1 (3,4,5) 4
1—-2 (4,5,6) 5
251 (5,6,7) 6
22 (2,3,4) 3
Fixed Costs f; i
Crisp Model
min Z = 4x;; + 5x1, + 6x51 + 3x55, + 10y, + 8y,, + 9y, + 7,y
Subject to:

Optimal Solution
Minimum Cost
Baseline optimal solution

e Selected routes:
e  Optimal cost:

X171 + X1, =20
Xyq1 + Xy, = 30
X1 + Xy = 22
X1y + Xy = 28

x11 = 20'x22 = 30
Yii=Ly;=1

Z=(4x20)+(3%x30)+10+7
Z =80+ 90+ 17 =[187]

1-1),2-2)
Z* =187

Table -2 for Sensitivity with Respect to Variable Transportation Cost C;;

Parameter Changed Variation New Cost Optimal Routes Change in Solution
C11 +10% 195 Same No
Ci11 -10% 179 Same No
Ciy +15% 187 Same No
C1 -20% 187 Same No
Coa +20% 205 Same No
Observation:

The model is robust to moderate fluctuations in variable costs. Route structure remains unchanged.

Table -3 for Sensitivity with Respect to Fixed Cost f; |

Parameter Changed Variation New Cost Optimal Routes Change
fi1 +25% 189.5 Same No
fu -25% 184.5 Same No
fi2 -30% 179 Route opens Yes
fa1 —30% 181 Route opens Yes
f22 +40% 194 Same No
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Observation:
Fixed costs strongly influence route activation decisions, making them critical sensitivity
Table -4 for Sensitivity with Respect to Supply S;

Supply Change New Supply Feasible Optimal Cost Change
S1+10% 22 Yes 192 No
S, —10% 18 Yes 182 No
S, +10% 33 Yes 198 No
S, —10% 27 Yes 179 No
Observation:
Supply variation affects total cost but does not alter optimal assignment pattern.
Table -5 for Sensitivity with Respect to Demand 5]
Demand Change New Demand Feasible Optimal Cost Change
D; +10% 24 Yes 193 No
D; —10% 20 Yes 181 No
D, +10% 31 Yes 199 No
D, —10% 25 Yes 180 No
Observation:
The model preserves feasibility and stability under balanced demand changes.
Table -6 for Sensitivity with Respect to Mode Capacity K,
Capacity Change New Capacity Feasible Optimal Cost Change
+20% 60 Yes 187 No
-10% 45 Yes 187 No
—25% 37 No — Infeasible
Observation:

Capacity reduction below a critical threshold causes infeasibility, showing capacity is a binding constraint.

Table -7 for Sensitivity with Respect to Fuzzy Time ;;

Time Variation Max Time Pareto Status Time Variation

+10% 7.7 Dominated +10%

-10% 6.3 Improved -10%

Mixed 7.0 Pareto-optimal Mixed
Observation:

Time objective directly affects Pareto dominance, confirming effectiveness of bi-objective formulation.

Table -8 for Ranking Function Sensitivity

Ranking Method Optimal Cost Route Change Ranking Method

Centroid 187 No Centroid

Mean of TFN 190 No Mean of TFN

Signed Distance 185 No Signed Distance
Observation:

Solution structure is insensitive to ranking method, ensuring decision stability :
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Table -9 for Overall Sensitivity Summary Table

Parameter Sensitivity Level
Variable Cost Low

Fixed Cost High

Supply Moderate

Demand Moderate

Capacity High

Time High (Pareto impact)
Ranking Function Very Low

III. RESULTS AND DISCUSSION (BASED ON
SENSITIVITY ANALYSIS)

1. Robustness to Variable Cost Changes :The
sensitivity analysis shows that moderate
variations in fuzzy variable transportation costs
lead only to proportional changes in the total
objective value, without altering the optimal
route structure. This indicates that the FMITAP
model is highly robust against operational cost
fluctuations.

2. High Sensitivity to Fixed Costs : Fixed
transportation costs significantly influence route
activation decisions. A reduction in fixed costs
for non-selected routes results in alternative
route selections, confirming that fixed costs are
critical parameters affecting the structural
configuration of the transportation—assignment
network.

3. Stability Under Supply Variations : Changes in
fuzzy supply levels affect the overall cost but do
not disturb feasibility or the optimal assignment
pattern  within  reasonable limits.  This
demonstrates that the model can effectively
handle uncertainty in production or availability
without requiring re-optimization of network
structure.

The model
maintains feasibility and optimality under
moderate variations in fuzzy demand. The stable
route structure under changing demand reflects
the adaptability of the FMITAP framework to
real-world market uncertainties.

5. Critical Role of Capacity Constraints
Transportation mode capacities exhibit high
sensitivity. While the solution remains optimal

4. Demand Fluctuation Resilience :

within allowable capacity ranges, excessive
capacity reductions lead to infeasibility,
highlighting capacity as a binding and
strategically important constraint.

6. Impact on Bi-Objective Trade-Offs (Cost—Time)
: Sensitivity analysis of fuzzy transportation time
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parameters affects Pareto dominance rather than
feasibility. Improvements in time enhance
solution quality, whereas increases lead to
dominated solutions, validating the effectiveness
of the bi-objective formulation.

7. Low Sensitivity to Ranking Function Choice :
The optimal assignment pattern remains
unchanged across different fuzzy ranking
methods, indicating methodological stability and
ensuring that decision outcomes are not biased
by the choice of defuzzification technique.

IVv. CONCLUSION

This study proposed a Fuzzy Multi-Index
Transportation Assignment Problem (FMITAP) to
address uncertainty in complex logistics and
assignment systems involving multiple origins,
destinations, transportation modes, and commodities.
The model incorporated triangular fuzzy numbers to
represent imprecise costs, capacities, supplies,
demands, and transportation times. By applying an
appropriate ranking function, the fuzzy model was
successfully transformed into a crisp mixed-integer
programming problem. The numerical example
demonstrated the effectiveness of the proposed
approach in obtaining an optimal solution with
minimum total cost while considering fixed route
activation decisions. The sensitivity analysis further
confirmed the robustness and stability of the model.
It revealed that variable transportation costs and
ranking methods have low impact on solution
structure, whereas fixed costs, capacity constraints,
and transportation time significantly influence route
selection, feasibility, and Pareto optimality. Overall,
the results validate that the FMITAP framework is a
reliable and practical decision-support tool for
transportation and assignment problems under
uncertainty. The integration of fuzzy logic with
multi-index and assignment constraints enhances the
model’s realism and applicability in real-world
supply chain and logistics planning.
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V. FUTURE SCOPE

1. Extension to Other Fuzzy Environments : The
proposed model can be extended by
incorporating advanced fuzzy concepts such as
intuitionistic fuzzy sets, Pythagorean fuzzy sets,
hesitant fuzzy sets, or type-2 fuzzy numbers to
capture higher levels of uncertainty.

2. Inclusion of Additional Objectives : Future
research  may  consider  multi-objective
extensions involving carbon emissions, risk,
reliability, service level, or sustainability,
resulting in a more comprehensive decision-
making framework.

3. Development of Metaheuristic Algorithms :
Since the FMITAP model is NP-hard, heuristic
or metaheuristic techniques such as genetic
algorithms, particle swarm optimization, or
hybrid algorithms can be developed for solving
large-scale real-life problems.

4. Dynamic and Stochastic Extensions : The
current model assumes a static environment.
Future work may incorporate dynamic, time-
dependent, or stochastic parameters to reflect
real-time logistics operations.

5. Real-World Case Studies : Applying the model
to actual industrial or supply chain case studies
(e.g., manufacturing, humanitarian logistics, or
e-commerce distribution) would further validate
its practical usefulness.

6. Integration with Decision Support Systems : The
FMITAP framework can be embedded into
computer-based decision support systems or
optimization software, enabling practitioners to
perform scenario analysis and sensitivity studies
easily.
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