

AI Waste Management

S. S. KADAM GAIKWAD¹, SAMIKSHA NIKALJE², PRANAVI SHELKE³, YADNASHREE GAIKWAD⁴, TANISHKA CHAKANKAR⁵

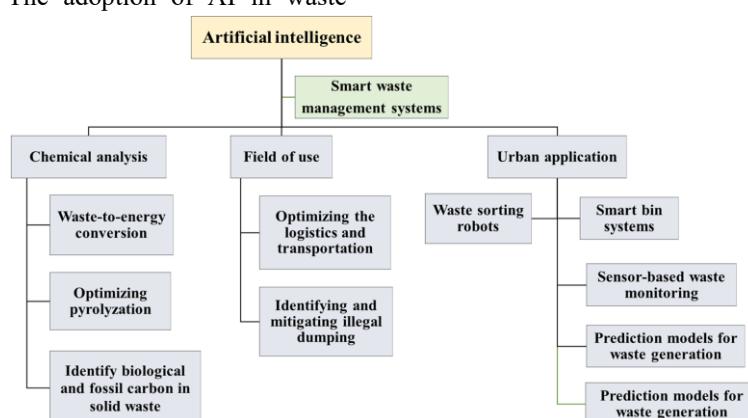
^{1, 2, 3, 4, 5}Department of Civil Engineering, JSPM'S RSCOE Polytechnic, Tathawade, Pune, Maharashtra, India

Abstract: Artificial Intelligence (AI) offers a new solution by bringing together smart sensors, the Internet of Things (IoT), and computer vision techniques for effective waste monitoring, sorting, and collection. This paper presents an AI-based waste management system that automates sorting waste into wet and dry categories. It also allows for real-time monitoring of waste levels and supports decisions based on data. The proposed system improves efficiency, reduces human effort, cuts pollution, and encourages sustainable urban development.

Keywords: Artificial Intelligence, Smart Waste Management, IoT, Computer Vision, Waste Segregation, Sustainable Development

I. INTRODUCTION

Waste management has become one of the major challenges faced by modern cities due to increasing population, urban expansion, and changing lifestyles. Improper waste disposal leads to pollution, health hazards, and environmental degradation. Traditional waste management practices depend heavily on manual labour and fixed collection schedules, which often result in overflowing bins and inefficient resource utilization. Artificial Intelligence (AI) combined with IoT offers an advanced solution to overcome these limitations. Smart waste bins equipped with sensors and cameras can monitor waste levels in real time and automatically segregate waste into wet and dry categories. AI-based systems enable optimized collection routes, reduce unnecessary trips, and support sustainable waste handling practices. The adoption of AI in waste


management contributes significantly to cleaner cities, improved hygiene, and reduced environmental impact. In the context of smart cities and sustainable infrastructure development, AI-based waste management systems play a crucial role in improving urban cleanliness and environmental sustainability.

II. AIM & OBJECTIVE

Aim: The aim of the AI-based waste management system is to design and implement a smart, reliable, and automated waste management solution that uses artificial intelligence to accurately identify and segregate different types of waste, continuously monitor waste bin conditions in real time, optimize waste collection processes, reduce operational costs, and support environmental sustainability by improving recycling rates and minimizing the negative impact of improper waste disposal.

III. OBJECTIVES

1. To automate waste collection and segregation using AI technologies.
2. To improve efficiency and accuracy in waste management operations.
3. To reduce human involvement and enhance worker safety.
4. To promote recycling, reuse, and sustainable environmental practices.
5. To reduce manual waste handling and improve hygiene and safety.

IV. RELATED WORK

1. Shubham Rai (2020)

In this paper we studied that how to manage all types of waste like Solid Waste, Industrial Waste, Institutional Waste, Plastic Waste etc. through Smart Bin- AI system.

2. Sharma P. (2021)

An Automatic Waste Segregation System uses sensors (IR, moisture, metal detectors) to identify waste type (wet, dry, metal, plastic) & a microcontroller (like Arduino) to control actuators (servo motors, conveyor belts) that sort the waste into separate bins, often incorporating IoT for monitoring & alerts, thereby automating a process that enhances recycling efficiency & reduces manual labor.

3. Abhishek Pawaskar(2022)

Waste object segmentation using deep learning is a critical computer vision task designed to automate waste sorting, management, and environmental cleaning by pixel-level identification of garbage in images

V. METHODOLOGY

Material Used:

1. Servo Motors
2. Water Sensor
3. Ultrasonic Sensor
4. Arduino Uno

Experimental procedure:

The experimental procedure begins with the setup of the AI-based waste management system, where a smart waste bin is integrated with a camera module, ultrasonic sensor, processing unit, and servo motors. A dataset of waste images including plastic, paper, metal, glass, and organic waste is collected and labeled for training and testing purposes. These images are preprocessed and used to train a Convolutional Neural Network (CNN) model until acceptable classification accuracy is achieved, after

which the trained model is deployed on the processing unit. The ultrasonic sensor is calibrated to accurately measure the fill level of the waste bin, and threshold values are defined for different fill conditions. During real-time experimentation, waste items are placed in front of the camera, which captures images that are analyzed by the AI model to classify the waste type. Based on the classification output, servo motors are activated to direct the waste into the appropriate compartment. Simultaneously, the ultrasonic sensor continuously monitors the bin fill level, and when the predefined limit is reached, an alert is generated and transmitted through the communication module to the monitoring platform. System performance is evaluated by observing classification accuracy, response time, and segregation efficiency, and the obtained results are compared with conventional manual waste management methods.

Improve Public Health and quality of life

The implementation of an AI-based waste management system plays a significant role in improving public health and overall quality of life. Proper segregation and timely collection of waste reduce the accumulation of garbage in public areas, thereby minimizing the spread of harmful bacteria, viruses, and disease-causing microorganisms. Efficient waste handling helps in controlling pests such as mosquitoes, rodents, and flies, which are major carriers of infectious diseases. By preventing waste overflow, the system reduces foul odors and air pollution, creating a cleaner and healthier environment for communities.

The reduction in manual handling of waste lowers health risks for sanitation workers by minimizing their exposure to hazardous and infectious materials. Improved recycling efficiency decreases landfill usage and reduces soil and water contamination, contributing to long-term environmental safety. AI-driven monitoring ensures consistent cleanliness in residential areas, hospitals, schools, and public places, which directly enhances living standards.

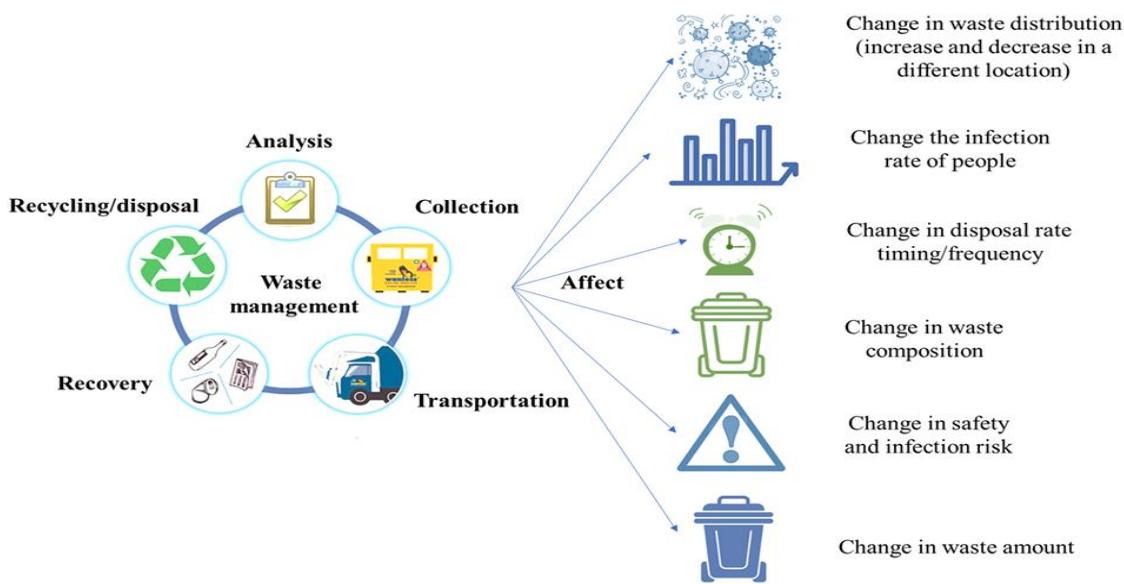


Fig. 1 AI Waste Management Process

[3]. Abhishek Pawaskar (2022): Waste Object Segmentation Using Deep Learning.

Fig. 2 AI Waste Dustbin

VI. RESULTS

The proposed AI-based waste management system was experimentally tested to evaluate its performance in waste classification, segregation, and bin monitoring. The Convolutional Neural Network (CNN) model achieved an overall classification accuracy of 92.4% across five waste categories: plastic, paper, metal, glass, and organic waste. Plastic and metal waste showed the highest accuracy of 95% and 94%, respectively, while organic waste classification achieved 89% accuracy due to variations in shape and texture.

REFERENCES

- [1]. Shubham Rai (2020): Waste Management Through Smart Bin-AI.
- [2]. Sharma P. (2021): Automatic Waste Segregation System using Sensors and Microcontroller.