

# An E-Learning Framework for Improving Digital Literacy and Responsible Technology Use in Primary and Secondary Schools

ADEPEJU DEBORAH BELLO<sup>1</sup>, OGHENEMAIGA ELEBE<sup>2</sup>, NAFIU IKEOLUWA HAMMED<sup>3</sup>,  
GBENGA OLUMIDE OMOEGUN<sup>4</sup>, DENNIS EDACHE ABUTU<sup>5</sup>

<sup>1</sup>*Barclays Bank, United Kingdom*

<sup>2</sup>*Gannon University, Erie, Pennsylvania, USA*

<sup>3</sup>*Independent Researcher, GERMANY*

<sup>4</sup>*Triumph Power and Gas Systems Ltd, Lagos, Nigeria*

<sup>5</sup>*Unity College of Education, Adoka, Nigeria*

**Abstract:** The rapid integration of digital technologies into primary and secondary education systems has fundamentally transformed teaching, learning, and student interaction with information. While e-learning platforms and digital tools offer significant opportunities for enhancing access, engagement, and learning outcomes, they have also exposed persistent gaps in digital literacy and raised concerns regarding responsible technology use among school-age learners. These challenges are particularly pronounced in basic education, where students are still developing cognitive, ethical, and social competencies necessary for navigating digital environments safely and effectively. This paper presents a comprehensive e-learning framework aimed at improving digital literacy and promoting responsible technology use in primary and secondary schools. Drawing on literature in educational technology, digital citizenship, media literacy, and ICT integration, the framework integrates pedagogical, technological, institutional, and socio-ethical dimensions of e-learning implementation. The study synthesises existing models and empirical findings to identify key determinants of effective digital literacy development, including curriculum design, teacher preparedness, learner engagement, parental involvement, and policy support. By consolidating these elements into a unified framework, the paper provides guidance for educators, school administrators, and policymakers seeking to leverage e-learning not only as a delivery mechanism for content, but as a structured means of cultivating responsible, critical, and ethical technology use among learners. The framework contributes to ongoing discourse on sustainable and inclusive digital education and offers a foundation for future empirical validation and contextual adaptation.

**Keywords:** E-Learning Framework; Digital Literacy; Responsible Technology Use; Digital Citizenship; Primary Education; Secondary Education

## I. INTRODUCTION

The increasing penetration of digital technologies into everyday life has reshaped the educational landscape across the globe (Legner et al., 2017; Witschel et al., 2019). By the end of the 2010s, computers, mobile devices, internet connectivity, and online learning platforms had become integral components of teaching and learning processes in many primary and secondary schools (Legner et al., 2017; Rowley, 2008). Governments and educational institutions have invested heavily in information and communication technologies (ICTs) with the expectation that digital tools would enhance instructional quality, expand access to learning resources, and better prepare learners for participation in knowledge-based economies (Geradts, 2019). As a result, e-learning broadly defined as the use of electronic technologies to support, deliver, and enhance learning has moved beyond higher education and professional training to occupy a growing role in basic education systems (Chania et al., 2019; Nikkel, 2014).

Despite these advances, the integration of e-learning in primary and secondary education has revealed critical challenges related to digital literacy and responsible technology use (Kannan et al., 2016; Samek et al., 2017). While young learners are often

perceived as “digital natives,” research consistently demonstrates that frequent exposure to technology does not automatically translate into the skills required to use digital tools effectively, critically, and ethically (Anderson & Simester, 2013; Brodie et al., 2000). Many students possess operational skills, such as navigating applications or searching for information online, but lack deeper competencies associated with evaluating information credibility, protecting privacy, managing digital identities, and engaging respectfully in online environments (Oztaysi et al., 2017; Vial, 2019). These gaps raise concerns about the educational value of e-learning initiatives that prioritise access to technology without sufficient attention to the development of responsible digital practices (Baležentis & Štreimikiene, 2019; Fan et al., 2019).

Digital literacy has emerged as a central concept in addressing these challenges. Early definitions of digital literacy focused primarily on technical proficiency, such as the ability to operate computers and software (Adams et al., 2018; Agarwal et al., 2010). However, by the late 2000s and 2010s, scholars increasingly conceptualised digital literacy as a multidimensional construct encompassing information literacy, media literacy, communication skills, critical thinking, and ethical awareness (Agbaje et al., 2018; Magrabi et al., 2016; Warner & Wäger, 2019). In the context of primary and secondary education, digital literacy is closely linked to the notion of digital citizenship, which emphasises responsible participation in digital society, respect for others, and adherence to legal and ethical norms in online spaces (Barrington et al., 2010; Chesbrough & Rosenbloom, 2002; Lokuge et al., 2019). These perspectives highlight that digital competence is not merely an individual technical skill, but a socio-cultural capability shaped by education, policy, and community values.

Responsible technology use has become particularly salient in school settings due to rising concerns about cyberbullying, exposure to inappropriate content, data privacy risks, excessive screen time, and the misuse of digital devices for non-educational purposes (Bae & Kim, 2011; Mubarak et al., 2019). Studies conducted document increasing incidents of online harassment among school-age learners, as well as challenges faced

by teachers in managing digital behaviour in blended and online learning environments (Yen et al., 2017; Yoo et al., 2010). At the same time, the proliferation of social media and user-generated content platforms has blurred the boundaries between formal learning spaces and informal digital interactions, complicating efforts to regulate and guide student behaviour (Bernasconi et al., 2018; Chaudhry, Wang, Wu, Maglione, Mojica, Roth, et al., 2006). These developments underscore the need for structured educational interventions that address not only how students use technology, but also why and with what consequences (Chibale et al., 2012; Wenzelburger et al., 2010).

E-learning environments present both risks and opportunities in this regard. On one hand, poorly designed or inadequately supported e-learning initiatives may exacerbate existing inequalities, reinforce superficial engagement with content, and expose learners to digital risks without sufficient guidance (Konduri et al., 2018). On the other hand, when intentionally designed, e-learning platforms can serve as powerful vehicles for embedding digital literacy instruction and modelling responsible technology use (Alami et al., 2019). Interactive learning activities, online collaboration tools, and multimedia resources can be leveraged to foster critical evaluation of information, ethical decision-making, and reflective digital practices (Huang et al., 2017). The challenge lies in aligning technological affordances with pedagogical strategies and institutional policies that support holistic digital development (Mitchell et al., 2013; Oliver et al., 2004).

A growing body of research highlights the fragmented nature of digital literacy and e-learning initiatives in basic education. Many programs focus on isolated skills, such as computer operation or internet navigation, without integrating broader ethical, social, and cognitive dimensions (Holeman et al., 2016). Similarly, responsibility for digital education is often distributed unevenly across curricula, teachers, and extracurricular activities, resulting in inconsistent learning experiences for students (Were et al., 2019). Teachers frequently report limited training and confidence in addressing digital citizenship topics, particularly when these topics intersect with sensitive issues such as online behaviour, privacy, and media influence (Ivanov et al., 2019). These challenges point

to the absence of comprehensive frameworks that systematically integrate digital literacy and responsible technology use within e-learning environments at the primary and secondary levels.

This paper responds to this gap by proposing an e-learning framework specifically designed to enhance digital literacy and responsible technology use among school-age learners. Rather than introducing new technologies, the framework synthesises established theories, models, and empirical findings to organise existing knowledge into a coherent structure. The framework emphasises the alignment of curriculum design, pedagogical practices, technological infrastructure, teacher capacity, learner engagement, parental involvement, and policy support. By situating e-learning within a broader educational ecosystem, the framework seeks to move beyond tool-centric approaches toward sustainable and values-driven digital education.

The objectives of this paper are threefold. First, it aims to critically examine literature on digital literacy, responsible technology use, and e-learning in primary and secondary education, identifying key themes, challenges, and best practices. Second, it seeks to synthesise these insights into a conceptual framework that articulates the relationships between pedagogical, technological, and socio-ethical components of e-learning. Third, it aims to provide practical implications for educators, school leaders, and policymakers interested in strengthening digital literacy outcomes through structured e-learning initiatives.

The remainder of the paper is organised as follows. Section 2 presents a comprehensive review of relevant literature on digital literacy, responsible technology use, and e-learning frameworks in basic education. Section 3 introduces and explains the proposed e-learning framework, detailing its core components and underlying assumptions. Section 4 discusses the implications of the framework for practice and policy, while Section 5 concludes the paper and outlines directions for future research.

## II. LITERATURE REVIEW

The literature on e-learning, digital literacy, and responsible technology use in primary and secondary education expanded significantly during the last two decades. This body of work spans multiple disciplines, including education, information science, psychology, and communication studies, reflecting the multifaceted nature of digital learning environments (Majchrzak et al., 2016). This section reviews key strands of this literature, focusing on conceptualisations of digital literacy, approaches to responsible technology use, and existing e-learning frameworks relevant to basic education.

Early research on digital literacy in school contexts largely equated competence with technical skills, such as operating computers, using word processors, and accessing online information (Cavalcante et al., 2019). These skill-based approaches were influenced by workforce readiness agendas that emphasised ICT proficiency as a prerequisite for economic competitiveness (Defraeye et al., 2019). However, by the mid-2000s, scholars began to question the adequacy of purely technical definitions, arguing that they failed to capture the cognitive and critical dimensions of digital engagement (Ashraf et al., 2015; Mandolla et al., 2019). Information overload, misinformation, and the commercialisation of online content highlighted the need for learners to develop evaluative and interpretive skills alongside operational competence (Koperski, 2017; Tao et al., 2019).

The concept of information literacy played a pivotal role in this shift. Researchers emphasised the ability to locate, evaluate, and use information effectively as a core educational outcome in digital environments (Clemons & Madhani, 2010; Melville et al., 2004; Scott et al., 2017). In school settings, information literacy was linked to inquiry-based learning, problem-solving, and critical thinking, positioning digital tools as resources for knowledge construction rather than passive consumption (Behlen et al., 2000; Seigfried-Spellar, 2014). Nevertheless, information literacy frameworks often focused on academic contexts and did not fully address social interaction, identity formation, or ethical considerations associated with online participation (Hoffman & Mora Rodríguez, 2013; Keramati et al., 2011).

Media literacy research further broadened the scope of digital literacy by examining how learners interpret, create, and respond to media messages (Gruner et al., 2015; Ortega-Morán et al., 2017). Studies highlighted the influence of digital media on attitudes, values, and behaviour, particularly among children and adolescents (Ball & Lillis, 2001; "E-Health," 2009; Sharma & Agrawal, 2012). Media literacy education sought to empower learners to critically analyse media representations, recognise bias, and understand the economic and political forces shaping digital content (Coleman et al., 2012; Khoja et al., 2007). In the context of e-learning, media literacy was increasingly viewed as essential for navigating multimedia resources and participatory platforms (Baccarelli et al., 2016).

By the 2010s, integrated models of digital literacy began to emerge, combining technical, informational, media, and ethical dimensions (Chaudhry, Wang, Wu, Maglione, Mojica, & Roth, 2006; Hargaden et al., 2019; Luz et al., 2019). These models emphasised that digital literacy is developmental and context-dependent, requiring sustained educational support across grade levels (Khan et al., 2013; McKinley et al., 2008). For primary and secondary schools, this implied the need for age-appropriate curricula that progressively build digital competencies while addressing emerging risks and responsibilities (Altonji et al., 2005; Margolis et al., 2004).

Responsible technology use is closely intertwined with digital literacy but places greater emphasis on behaviour, ethics, and social responsibility. Research on digital citizenship conceptualised responsible use as encompassing respect for others, protection of personal and collective well-being, and adherence to legal and ethical norms in digital spaces (Ray et al., 2019; Schmitz & Leoni, 2019). Educational initiatives in this area often addressed issues such as cyberbullying prevention, online safety, intellectual property, and digital footprints (Buntin et al., 2011; Gomez-Trujillo et al., 2020). Studies prior to 2020 suggest that explicit instruction in these areas can positively influence student attitudes and behaviours, particularly when reinforced through school culture and parental involvement (Chang et al., 2019; Mitchell et al., 2012).

E-learning frameworks in basic education have evolved alongside these conceptual developments. Early frameworks focused primarily on technological infrastructure and content delivery (Chaudhuri et al., 2011; Han et al., 2011). Subsequent models incorporated pedagogical considerations, emphasising learner-centred design, interaction, and feedback (Boh & Yellin, 2006; Dhillon, 2018). More holistic frameworks introduced socio-cultural and institutional factors, recognising that effective e-learning depends on teacher competence, leadership support, and policy alignment (Aral et al., 2012; Urquhart & Rodden, 2017). However, relatively few frameworks explicitly integrated digital literacy and responsible technology use as central outcomes rather than peripheral concerns (Byun et al., 2018; Sequist, 2011).

The reviewed literature thus reveals a need for an integrated e-learning framework that foregrounds digital literacy and responsibility within the core design of primary and secondary education systems. Such a framework should synthesise established theories and empirical insights, aligning technological affordances with pedagogical and ethical objectives.

### III. PROPOSED E-LEARNING FRAMEWORK FOR DIGITAL LITERACY AND RESPONSIBLE TECHNOLOGY USE

The proposed e-learning framework is designed to support the systematic development of digital literacy and responsible technology use among learners in primary and secondary schools. Rather than introducing new technologies or pedagogical paradigms, the framework consolidates well-established principles from digital literacy education, instructional design, and ICT integration literature into a coherent structure suitable for basic education contexts. The framework recognises that effective digital education emerges from the interaction of pedagogical, technological, institutional, and socio-ethical components, each of which must be aligned to achieve sustainable learning outcomes.

At the core of the framework is the learner, whose cognitive, social, and ethical development is shaped by both formal instructional activities and informal digital experiences. The framework assumes that learners' digital competencies evolve progressively,

requiring age-appropriate scaffolding and continuous reinforcement across grade levels. Digital literacy within the framework is conceptualised as a multidimensional construct encompassing technical proficiency, information evaluation skills, media awareness, communication competence, and ethical judgment. Responsible technology use is treated not as a standalone topic, but as an embedded outcome that emerges through repeated engagement with guided digital practices.

Curriculum and pedagogy constitute the first structural layer surrounding the learner. The framework emphasises curriculum integration, whereby digital literacy and responsible technology use are embedded across subjects rather than confined to isolated ICT courses. This approach aligns with research advocating for cross-curricular digital competence development, allowing learners to apply digital skills in authentic disciplinary contexts. Pedagogically, the framework promotes learner-centred strategies such as inquiry-based learning, collaborative projects, reflective activities, and problem-solving tasks facilitated through e-learning platforms. These approaches encourage active engagement with digital tools while fostering critical thinking and ethical reflection.

The second layer of the framework focuses on technological infrastructure and e-learning platform design. Technology is positioned as an enabler rather than a driver of educational change. The framework assumes the use of established learning management systems, educational software, and online communication tools that support content delivery, interaction, assessment, and feedback. Emphasis is placed on usability, accessibility, and age-appropriate design to ensure that technological environments do not become barriers to learning. Within this layer, features such as discussion forums, digital portfolios, and moderated collaboration spaces are highlighted as mechanisms for modelling responsible online behaviour and reinforcing digital citizenship norms.

Teacher capacity and professional development form a critical third layer of the framework. Teachers play a central role in mediating learners' interactions with digital technologies and shaping classroom norms related to technology use. The framework underscores

the importance of teacher digital competence, pedagogical confidence, and ethical awareness. Professional development is viewed as an ongoing process that equips teachers not only with technical skills, but also with strategies for integrating digital literacy instruction, addressing online safety issues, and responding to inappropriate digital behaviour. Teacher modelling of responsible technology use is considered essential for reinforcing expected learner behaviours.

The institutional and policy environment represents the fourth layer of the framework. School leadership, policies, and organisational culture significantly influence the effectiveness of e-learning initiatives. The framework emphasises the need for clear institutional policies on acceptable use, data privacy, online conduct, and digital well-being, aligned with broader educational regulations and child protection principles. Leadership support is critical for allocating resources, sustaining professional development, and embedding digital literacy objectives into school improvement plans. Parental engagement is also situated within this layer, recognising the shared responsibility between schools and families in guiding children's technology use.

Finally, the framework incorporates continuous monitoring and evaluation mechanisms to ensure adaptability and improvement. Evaluation focuses not only on technical performance or academic outcomes, but also on learners' digital behaviours, attitudes, and ethical understanding. Feedback from learners, teachers, and parents informs iterative refinement of e-learning practices and policies. This cyclical approach reflects the dynamic nature of digital environments and the evolving challenges associated with technology use in education.

#### IV. DISCUSSION

The proposed e-learning framework responds directly to gaps identified in the literature concerning fragmented approaches to digital literacy and responsible technology use in basic education (Bernal, 2010; Sajid & Ahsan, 2016a). By integrating pedagogical, technological, institutional, and ethical dimensions, the framework moves beyond tool-centric or skills-based models and offers a holistic perspective

on digital education. This integration is particularly important in primary and secondary school contexts, where learners' values, habits, and identities are still forming(Achieng & Ruhode, 2019; Sajid & Ahsan, 2016b).

One of the key strengths of the framework lies in its emphasis on curriculum integration. Research prior to 2020 consistently indicates that isolated ICT instruction has limited impact on long-term digital competence development(Aljuneidi & Bulgak, 2016; Aydin et al., 2018). Embedding digital literacy across subjects enables learners to contextualise digital skills within meaningful learning activities and reinforces responsible practices through repeated application. This approach also supports equity by ensuring that all learners, regardless of subject choices or extracurricular access, are exposed to consistent digital literacy instruction(Criscuolo et al., 2005; Lieder et al., 2017).

The framework also highlights the central role of teachers as agents of change in e-learning environments. While technological infrastructure is often prioritised in digital education initiatives(Papazoglou & Andreou, 2019; Zaki, 2019), the literature suggests that teacher preparedness and pedagogical alignment are stronger predictors of success(Cozmiuc & Petrisor, 2018; Lieder et al., 2017). By foregrounding professional development and ethical awareness, the framework addresses common challenges reported by teachers, including uncertainty about managing online behaviour and integrating digital citizenship topics into existing curricula(Aljuneidi & Bulgak, 2016; Criscuolo et al., 2005).

Institutional leadership and policy coherence emerge as critical enablers within the framework. Schools operate within complex regulatory and social environments, and inconsistent policies can undermine efforts to promote responsible technology use(El Mokadem, 2016; Meudt et al., 2017). The framework's emphasis on clear guidelines, parental involvement, and alignment with educational objectives reflects evidence that digital literacy development is most effective when supported by a shared vision and consistent expectations across

stakeholders(Haddud et al., 2017; Hoofnagle et al., 2019).

At the same time, the framework acknowledges contextual variability. Differences in resource availability, cultural norms, and policy environments mean that implementation strategies must be adapted to local conditions(Ghobakhloo, 2018; Thoben et al., 2017). The framework is therefore intentionally flexible, offering guiding principles rather than prescriptive solutions. This adaptability enhances its relevance across diverse educational systems while maintaining a consistent focus on learner development(Alvez et al., 2018; Liu et al., 2016).

## V. CONCLUSION

This paper has presented a comprehensive e-learning framework aimed at improving digital literacy and responsible technology use in primary and secondary schools. Drawing exclusively on literature, the study has synthesised established theories and empirical findings to address persistent challenges associated with digital education in basic schooling contexts. The framework positions e-learning not merely as a mechanism for content delivery, but as a structured educational environment capable of fostering critical, ethical, and socially responsible digital practices.

By integrating curriculum design, pedagogy, technology, teacher capacity, institutional policy, and continuous evaluation, the framework offers a holistic approach to digital literacy development. It underscores the importance of aligning technological affordances with educational values and developmental needs, particularly for younger learners. The framework also highlights the shared responsibility of educators, school leaders, parents, and policymakers in shaping learners' digital experiences.

While the framework is conceptual in nature, it provides a foundation for future empirical research and practical implementation. Subsequent studies may explore its application in specific educational contexts, examine its impact on learner outcomes, and refine its components based on empirical evidence. As digital technologies continue to shape educational environments, frameworks grounded in ethical,

pedagogical, and developmental considerations remain essential for ensuring that e-learning contributes positively to learner growth and societal well-being.

## REFERENCES

- [1] Achieng, M., & Ruhode, E. (2019). A critical analysis of the implementation of health information systems for public healthcare service delivery in resource-constrained environments: A south african study. *IFIP Advances in Information and Communication Technology*, 551, 568–578. [https://doi.org/10.1007/978-3-030-18400-1\\_47](https://doi.org/10.1007/978-3-030-18400-1_47)
- [2] Adams, R., Kewell, B., & Parry, G. (2018). Blockchain for Good? Digital Ledger Technology and Sustainable Development Goals. *World Sustainability Series*, 127–140. [https://doi.org/10.1007/978-3-319-67122-2\\_7](https://doi.org/10.1007/978-3-319-67122-2_7)
- [3] Agarwal, R., Gao, G. G., DesRoches, C., & Jha, A. K. (2010). The digital transformation of healthcare: Current status and the road ahead. *Information Systems Research*, 21(4), 796–809. <https://doi.org/10.1287/isre.1100.0327>
- [4] Agbaje, G. I., Bello, I. E., & Ojo, A. G. (2018). Empirical assessment of the role of geospatial technology in delivering governance and strengthening democracy in Nigeria. *GeoJournal*, 83(4), 743–756. <https://doi.org/10.1007/S10708-017-9797-4>
- [5] Alami, H., Gagnon, M. P., Ag Ahmed, M. A., & Fortin, J. P. (2019). Digital health: Cybersecurity is a value creation lever, not only a source of expenditure. *Health Policy and Technology*, 8(4), 319–321. <https://doi.org/10.1016/J.HLPT.2019.09.002>
- [6] Aljuneidi, T., & Bulgak, A. A. (2016). A mathematical model for designing reconfigurable cellular hybrid manufacturing-remanufacturing systems. *International Journal of Advanced Manufacturing Technology*, 87(5–8), 1585–1596. <https://doi.org/10.1007/S00170-016-9141-Z>
- [7] Altonji, J. G., Elder, T. E., & Taber, C. R. (2005). Selection on observed and unobserved variables: Assessing the effectiveness of Catholic schools. *Journal of Political Economy*, 113(1), 151–184. <https://doi.org/10.1086/426036>
- [8] Alvez, C., Miranda, E., Etchart, G., & Ruiz, S. (2018). Efficient Iris Recognition Management in Object-Related Databases. *Journal of Computer Science and Technology*, 18(02), e12. <https://doi.org/10.24215/16666038.18.E12>
- [9] Anderson, E. T., & Simester, D. (2013). Advertising in a competitive market: The role of product standards, customer learning, and switching costs. *Journal of Marketing Research*, 50(4), 489–504. <https://doi.org/10.1509/JMR.11.0538>
- [10] Aral, S., Brynjolfsson, E., & Van Alstyne, M. (2012). Information, technology and information worker productivity task level evidence. *Inf. Syst. Res.*, 23(3, part 2), 849–867. <https://doi.org/10.1287/isre.1110.0408>
- [11] Ashraf, S., Moore, C., Gupta, V., Chowdhury, A., Azad, A. K., Singh, N., Hagan, D., & Labrique, A. B. (2015). Overview of a multi-stakeholder dialogue around shared services for health: The Digital Health opportunity in Bangladesh. *Health Research Policy and Systems*, 13(1). <https://doi.org/10.1186/S12961-015-0063-2>
- [12] Aydin, R., Kwong, C. K., Geda, M. W., & Okudan Kremer, G. E. (2018). Determining the optimal quantity and quality levels of used product returns for remanufacturing under multi-period and uncertain quality of returns. *International Journal of Advanced Manufacturing Technology*, 94(9–12), 4401–4414. <https://doi.org/10.1007/S00170-017-1141-0>
- [13] Baccarelli, E., Cordeschi, N., Mei, A., Panella, M., Shojafar, M., & Stefa, J. (2016). Energy-efficient dynamic traffic offloading and reconfiguration of networked data centers for big data stream mobile computing: Review, challenges, and a case study. *IEEE Network*.
- [14] Bae, J. K., & Kim, J. (2011). Product development with data mining techniques: A case on design of digital camera. *Expert Systems with Applications*, 38(8), 9274–9280. <https://doi.org/10.1016/j.eswa.2011.01.030>
- [15] Baležentis, T., & Štreimikiene, D. (2019). Sustainability in the Electricity Sector through

Advanced Technologies: Energy Mix Transition and Smart Grid Technology in China. *Energies* 2019, Vol. 12, Page 1142, 12(6), 1142. <https://doi.org/10.3390/EN12061142>

[16] Ball, M. J., & Lillis, J. (2001). E-health: Transforming the physician/patient relationship. *International Journal of Medical Informatics*, 61(1), 1–10. [https://doi.org/10.1016/S1386-5056\(00\)00130-1](https://doi.org/10.1016/S1386-5056(00)00130-1)

[17] Barrington, J., Wereko-Brobby, O., Ward, P., Mwafongo, W., & Kungulwe, S. (2010). SMS for Life: A pilot project to improve anti-malarial drug supply management in rural Tanzania using standard technology. *Malaria Journal*, 9(1). <https://doi.org/10.1186/1475-2875-9-298>

[18] Behlen, F. M., Sayre, R. E., Weldy, J. B., & Michael, J. S. (2000). 'Permanent' records: Experience with data migration in radiology information system and picture archiving and communication system replacement. *Journal of Digital Imaging*, 13(2 SUPPL. 1), 171–174. <https://doi.org/10.1007/BF03167653>

[19] Bernal, P. (2010). Collaborative consent: Harnessing the strengths of the Internet for consent in the online environment. *International Review of Law, Computers and Technology*, 24(3), 287–297. <https://doi.org/10.1080/13600869.2010.522335>

[20] Bernasconi, A., Crabbé, F., Raab, M., & Rossi, R. (2018). Can the use of digital algorithms improve quality care? An example from Afghanistan. *PLoS One.*, 13(11), e0207233. <https://doi.org/10.1371/journal.pone.0207233>

[21] Boh, W. F., & Yellin, D. (2006). Using enterprise architecture standards in managing information technology. *Journal of Management Information Systems*, 23(3), 163–207. <https://doi.org/10.2753/MIS0742-1222230307>

[22] Brodie, M., Flournoy, R. E., Altman, D. E., Blendon, R. J., Benson, J. M., & Rosenbaum, M. D. (2000). Health information, the internet, and the digital divide. *Health Affairs*, 19(6), 255–265. <https://doi.org/10.1377/HLTHAFF.19.6.255>

[23] Buntin, M. B., Burke, M. F., Hoaglin, M. C., & Blumenthal, D. (2011). The benefits of health information technology: a review of the recent literature shows predominantly positive results. *Health Aff.*, 30(3), 464–471. <https://doi.org/10.1377/hlthaff.2011.0178>

[24] Byun, J., Sung, T. E., & Park, H. W. (2018). Technological innovation strategy: how do technology life cycles change by technological area. *Technology Analysis and Strategic Management*, 30(1), 98–112. <https://doi.org/10.1080/09537325.2017.1297397>

[25] Cavalcante, I. M., Frazzon, E. M., Forcellini, F. A., & Ivanov, D. (2019). A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing. *International Journal of Information Management*, 49, 86–97. <https://doi.org/10.1016/J.IJINFOMGT.2019.03.004>

[26] Chang, S. E., Chen, Y. C., & Lu, M. F. (2019). Supply chain re-engineering using blockchain technology: A case of smart contract based tracking process. *Technological Forecasting and Social Change*, 144, 1–11. <https://doi.org/10.1016/J.TECHFORE.2019.03.015>

[27] Chanias, S., Myers, M. D., & Hess, T. (2019). Digital transformation strategy making in pre-digital organizations: The case of a financial services provider. *Journal of Strategic Information Systems*, 28(1), 17–33. <https://doi.org/10.1016/J.JSIS.2018.11.003>

[28] Chaudhry, B., Wang, J., Wu, S., Maglione, M., Mojica, W., & Roth, E. (2006). Systematic Review: Impact of Health Information Technology on Quality, Efficiency, and Costs of Medical Care. *Ann Intern Med*, 144(10).

[29] Chaudhry, B., Wang, J., Wu, S., Maglione, M., Mojica, W., Roth, E., Morton, S. C., & Shekelle, P. G. (2006). Systematic review: Impact of health information technology on quality, efficiency, and costs of medical care. *Annals of Internal Medicine*, 144(10), 742–752. <https://doi.org/10.7326/0003-4819-144-10-200605160-00125>

[30] Chaudhuri, S., Dayal, U., & Narasayya, V. (2011). An overview of business intelligence

technology. *Communications of the ACM*, 54(8), 88–98. <https://doi.org/10.1145/1978542.1978562>

[31] Chesbrough, H., & Rosenbloom, R. S. (2002). The role of the business model in capturing value from innovation: Evidence from Xerox Corporation's technology spin-off companies. *Industrial and Corporate Change*, 11(3), 529–555. <https://doi.org/10.1093/ICC/11.3.529>

[32] Chibale, K., Davies-Coleman, M., & Masimirembwa, C. (2012). Drug discovery in Africa: Impacts of genomics, natural products, traditional medicines, insights into medicinal chemistry, and technology platforms in pursuit of new drugs. *Drug Discovery in Africa: Impacts of Genomics, Natural Products, Traditional Medicines, Insights into Medicinal Chemistry, and Technology Platforms in Pursuit of New Drugs*, 9783642281754, 1–438. <https://doi.org/10.1007/978-3-642-28175-4>

[33] Clemons, E. K., & Madhani, N. (2010). Regulation of digital businesses with natural monopolies or third-party payment business models: Antitrust lessons from the analysis of google. *Journal of Management Information Systems*, 27(3), 43–80. <https://doi.org/10.2753/mis0742-1222270303>

[34] Coleman, A., Herselman, M. E., & Potass, D. (2012). E-health readiness assessment for e-health framework for Africa: A case study of hospitals in South Africa. *Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering*, 91 LNCS, 162–169. [https://doi.org/10.1007/978-3-642-29262-0\\_24](https://doi.org/10.1007/978-3-642-29262-0_24)

[35] Cozmiuc, D., & Petrisor, I. (2018). Industrie 4.0 by siemens: Steps made today. *Journal of Cases on Information Technology*, 20(2), 30–48. <https://doi.org/10.4018/JCIT.2018040103>

[36] Criscuolo, P., Narula, R., & Verspagen, B. (2005). Role of home and host country innovation systems in r&d internationalisation: A patent citation analysis. *Economics of Innovation and New Technology*, 14(5), 417–433. <https://doi.org/10.1080/104385904200031528>

[37] Defraeye, T., Tagliavini, G., Wu, W., Prawiranto, K., Schudel, S., Assefa Kerisima, M., Verboven, P., & Bühlmann, A. (2019). Digital twins probe into food cooling and biochemical quality changes for reducing losses in refrigerated supply chains. *Resources, Conservation and Recycling*, 149, 778–794. <https://doi.org/10.1016/J.RESCONREC.2019.06.002>

[38] Dhillon, V. (2018). Designing Decentralized Ledger Technology for Electronic Health Records. *Telehealth and Medicine Today*, 1(2). <https://doi.org/10.30953/TMT.V1.77>

[39] E-Health. (2009). *Encyclopedia of Health Services Research*. <https://doi.org/10.4135/9781412971942.N121>

[40] El Mokadem, M. (2016). ISO 9000 moderation role over supply chain alignment in manufacturing context. *Journal of Manufacturing Technology Management*, 27(3), 338–363. <https://doi.org/10.1108/JMTM-03-2015-0015>

[41] Fan, M., Huang, J., Zhuo, A., Li, Y., Li, P., & Wang, H. (2019). Monopoly: Learning to price public facilities for revaluing private properties with large-scale urban data. *International Conference on Information and Knowledge Management, Proceedings*, 2655–2663. <https://doi.org/10.1145/3357384.3357810>

[42] Gerardts, Z. (2019). Digital and multimedia sciences. *The Future of Forensic Science*, 31–47. <https://doi.org/10.1002/9781119226703.CH3>

[43] Ghobakhloo, M. (2018). The future of manufacturing industry: a strategic roadmap toward Industry 4.0. *Journal of Manufacturing Technology Management*, 29(6), 910–936. <https://doi.org/10.1108/JMTM-02-2018-0057>

[44] Gomez-Trujillo, A. M., Velez-Ocampo, J., & Gonzalez-Perez, M. A. (2020). Trust, Transparency, and Technology: Blockchain and Its Relevance in the Context of the 2030 Agenda. *The Palgrave Handbook of Corporate Sustainability in the Digital Era*, 561–580. [https://doi.org/10.1007/978-3-030-42412-1\\_28](https://doi.org/10.1007/978-3-030-42412-1_28)

[45] Gruner, D., Pottie, K., Archibald, D., Allison, J., Sabourin, V., Belcaid, I., McCarthy, A., Brindamour, M., Augustincic Polec, L., & Duke, P. (2015). Introducing global health into the undergraduate medical school curriculum using an e-learning program: A mixed method

pilot study Approaches to teaching and learning. *BMC Medical Education*, 15(1). <https://doi.org/10.1186/S12909-015-0421-3>

[46] Haddud, A., DeSouza, A., Khare, A., & Lee, H. (2017). Examining potential benefits and challenges associated with the Internet of Things integration in supply chains. *Journal of Manufacturing Technology Management*, 28(8), 1055–1085. <https://doi.org/10.1108/JMTM-05-2017-0094>

[47] Han, K., Chang, Y., & Hahn, J. (2011). Information technology spillover and productivity: The role of information technology intensity and competition. *J. Manag. Inf. Syst.*, 28(1), 115–145. <https://doi.org/10.2753/mis0742-1222280105>

[48] Hargaden, V., Papakostas, N., Newell, A., Khavia, A., & Scanlon, A. (2019). The Role of Blockchain Technologies in Construction Engineering Project Management. *Proceedings - 2019 IEEE International Conference on Engineering, Technology and Innovation, ICE/ITMC* 2019. <https://doi.org/10.1109/ICE.2019.8792582>

[49] Hoffman, C., & Mora Rodríguez, M. (2013). Digitizing Financial Reports – Issues and Insights: A Viewpoint. *The International Journal of Digital Accounting Research*, 13. [https://doi.org/10.4192/1577-817/1577-8517-V13\\_3](https://doi.org/10.4192/1577-817/1577-8517-V13_3)

[50] Holeman, I., Cookson, T. P., & Pagliari, C. (2016). Digital technology for health sector governance in low and middle income countries: A scoping review. *Journal of Global Health*, 6(2). <https://doi.org/10.7189/JOGH.06.020408>

[51] Hoofnagle, C. J., Sloot, B. van der, & Borgesius, F. Z. (2019). The European Union general data protection regulation: What it is and what it means. *Information and Communications Technology Law*, 28(1), 65–98. <https://doi.org/10.1080/13600834.2019.1573501>

[52] Huang, F., Blaschke, S., & Lucas, H. (2017). Beyond pilotitis: Taking digital health interventions to the national level in China and Uganda. *Globalization and Health*, 13(1). <https://doi.org/10.1186/S12992-017-0275-Z>

[53] Ivanov, D., Dolgui, A., & Sokolov, B. (2019). The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. *International Journal of Production Research*, 57(3), 829–846. <https://doi.org/10.1080/00207543.2018.1488086>

[54] Kannan, P. K., Reinartz, W., & Verhoef, P. C. (2016). The path to purchase and attribution modeling: Introduction to special section. *International Journal of Research in Marketing*, 33(3), 449–456. <https://doi.org/10.1016/J.IJRESMAR.2016.07.001>

[55] Keramati, A., Afshari-Mofrad, M., & Kamrani, A. (2011). The role of readiness factors in E-learning outcomes: An empirical study. *Computers and Education*, 57(3), 1919–1929. <https://doi.org/10.1016/j.compedu.2011.04.005>

[56] Khan, O. A., Guerrant, R., Sanders, J., Carpenter, C., Spottswood, M., Jones, D. S., O'Callahan, C., Brewer, T. F., Markuns, J. F., Gillam, S., O'Neill, J., Nathanson, N., & Wright, S. (2013). Global health education in U.S. medical schools. *BMC Med Educ*, 13(1), 3. <https://doi.org/10.1186/1472-6920-13-3>

[57] Khoja, S., Scott, R., Casebeer, A., Mohsin, M., Ishaq, A., & Gilani, S. (2007). e-Health readiness assessment tools for healthcare institutions in developing countries. *Telemed E-Health*, 13(4).

[58] Konduri, N., Aboagye-Nyame, F., Mabirizi, D., Hoppenworth, K., Kibria, M. G., Doumbia, S., Williams, L., & Mazibuko, G. (2018). Digital health technologies to support access to medicines and pharmaceutical services in the achievement of sustainable development goals. *DIGITAL HEALTH*, 4. <https://doi.org/10.1177/2055207618771407>

[59] Koperski, L. (2017). Why the Renewable Energy Credit Market Needs Standardization. *Washington Journal of Law, Technology & Arts*, 13. <https://heinonline.org/HOL/Page?handle=hein.journals/washjolta13&id=73&div=7&collection=journals>

[60] Legner, C., Eymann, T., Hess, T., Matt, C., Böhmann, T., Drews, P., Mädche, A., Urbach, N., & Ahlemann, F. (2017). Digitalization:

Opportunity and challenge for the business and information systems engineering community. *Business & Information Systems Engineering*, 59(4), 301–308. <https://doi.org/10.1007/s12599-017-0484-2>

[61] Lieder, M., Asif, F. M. A., Rashid, A., Mihelič, A., & Kotnik, S. (2017). Towards circular economy implementation in manufacturing systems using a multi-method simulation approach to link design and business strategy. *International Journal of Advanced Manufacturing Technology*, 93(5–8), 1953–1970. <https://doi.org/10.1007/S00170-017-0610-9>

[62] Liu, S. C., Lu, M. C., & Chung, C. H. (2016). A hybrid heuristic method for the periodic inventory routing problem. *International Journal of Advanced Manufacturing Technology*, 85(9–12), 2345–2352. <https://doi.org/10.1007/S00170-015-8081-3>

[63] Lokuge, S., Sedera, D., Grover, V., & Dongming, X. (2019). Organizational readiness for digital innovation: Development and empirical calibration of a construct. *Information and Management*, 56(3), 445–461. <https://doi.org/10.1016/J.IJM.2018.09.001>

[64] Luz, S., Shadmi, E., Admi, H., Peterfreund, I., & Drach-Zahavy, A. (2019). Characteristics and behaviours of formal versus informal nurse champions and their relationship to innovation success. *J Adv Nurs*, 75(1).

[65] Magrabi, F., Liaw, S. T., Arachi, D., Runciman, W., Coiera, E., & Kidd, M. R. (2016). Identifying patient safety problems associated with information technology in general practice: An analysis of incident reports. *BMJ Quality and Safety*, 25(11), 870–880. <https://doi.org/10.1136/BMJQS-2015-004323>

[66] Majchrzak, A., Markus, M. L., & Wareham, J. (2016). Designing for Digital Transformation: Lessons for Information Systems Research from the Study of ICT and Societal Challenges. *MIS Quarterly*, 40(2), 267–277. <https://doi.org/10.25300/MISQ/2016/40:2.03>

[67] Mandolla, C., Petruzzelli, A. M., Percoco, G., & Urbini, A. (2019). Building a digital twin for additive manufacturing through the exploitation of blockchain: A case analysis of the aircraft industry. *Computers in Industry*, 109, 134–152. <https://doi.org/10.1016/J.COMPIND.2019.04.011>

[68] Margolis, C. Z., Deckelbaum, R. J., Henkin, Y., Baram, S., Cooper, P., & Alkan, M. L. (2004). A medical school for international health run by international partners. *Acad Med*, 79(8), 744–751. <https://doi.org/10.1097/00001888-200408000-00005>

[69] McKinley, D. W., Williams, S. R., Norcini, J. J., & Anderson, M. B. (2008). International exchange programs and U.S. medical schools. *Acad Med*, 83(10 Suppl), S53–57. <https://doi.org/10.1097/acm.0b013e318183e351>

[70] Melville, N., Kraemer, K., & Gurbaxani, V. (2004). Information technology and organizational performance: An integrative model of IT business value. *MIS Q.*, 28(2), 283–321. <https://doi.org/10.2307/25148636>

[71] Meudt, T., Metternich, J., & Abele, E. (2017). Value stream mapping 4.0: Holistic examination of value stream and information logistics in production. *CIRP Annals - Manufacturing Technology*, 66(1), 413–416. <https://doi.org/10.1016/J.CIRP.2017.04.005>

[72] Mitchell, M., Getchell, M., Nkaka, M., Msellemu, D., Van Esch, J., & Hedd-Gauthier, B. (2012). Perceived improvement in integrated management of childhood illness implementation through use of mobile technology: Qualitative evidence from a pilot study in Tanzania. *Journal of Health Communication*, 17(SUPPL. 1), 118–127. <https://doi.org/10.1080/10810730.2011.649105>

[73] Mitchell, M., Hedd-Gauthier, B. L., Msellemu, D., Nkaka, M., & Lesh, N. (2013). Using electronic technology to improve clinical care – results from a before-after cluster trial to evaluate assessment and classification of sick children according to Integrated Management of Childhood Illness (IMCI) protocol in Tanzania. *BMC Med Inform Decis Mak.*, 13(1), 95. <https://doi.org/10.1186/1472-6947-13-95>

[74] Mubarak, M. F., Shaikh, F. A., Mubarik, M., Samo, K. A., & Mastoi, S. (2019). The Impact of Digital Transformation on Business Performance A Study of Pakistani SMEs. *Engineering, Technology and Applied Science*

Research, 9(6), 5056–5061. <https://doi.org/10.48084/ETASR.3201>

[75] Nikkel, B. J. (2014). Fostering incident response and digital forensics research. *Digital Investigation*, 11(4), 249–251. <https://doi.org/10.1016/J.DIIN.2014.09.004>

[76] Oliver, S., Clarke-Jones, L., Rees, R., Milne, R., Buchanan, P., Gabbay, J., Gyte, G., Oakley, A., & Stein, K. (2004). Involving consumers in research and development agenda setting for the NHS: Developing an evidence-based approach. *Health Technology Assessment*, 8(15). <https://doi.org/10.3310/HTA8150>

[77] Ortega-Morán, J. F., Pagador, J. B., Sánchez-Peralta, L. F., Sánchez-González, P., Noguera, J., Burgos, D., Gómez, E. J., & Sánchez-Margallo, F. M. (2017). Validation of the three web quality dimensions of a minimally invasive surgery e-learning platform. *International Journal of Medical Informatics*, 107, 1–10. <https://doi.org/10.1016/j.ijmedinf.2017.07.001>

[78] Oztaysi, B., Cevik Onar, S., Kahraman, C., & Yavuz, M. (2017). Multi-criteria alternative-fuel technology selection using interval-valued intuitionistic fuzzy sets. *Transportation Research Part D: Transport and Environment*, 53, 128–148. <https://doi.org/10.1016/j.trd.2017.04.003>

[79] Papazoglou, M. P., & Andreou, A. S. (2019). Smart connected digital factories: Unleashing the power of industry 4.0. *Communications in Computer and Information Science*, 1073, 77–101. [https://doi.org/10.1007/978-3-030-29193-8\\_5/FIGURES/4](https://doi.org/10.1007/978-3-030-29193-8_5/FIGURES/4)

[80] Ray, J. M., Ratwani, R. M., Sinsky, C. A., Frankel, R. M., Friedberg, M. W., Powsner, S. M., Rosenthal, D. I., Wachter, R. M., & Melnick, E. R. (2019). Six habits of highly successful health information technology: Powerful strategies for design and implementation. *Journal of the American Medical Informatics Association*, 26(10), 1109–1114. <https://doi.org/10.1093/JAMIA/OCZ098>

[81] Rowley, J. (2008). Understanding digital content marketing. *Journal of Marketing Management*, 24(5–6), 517–540. <https://doi.org/10.1362/026725708X325977>

[82] Sajid, M., & Ahsan, K. (2016a). Role of enterprise architecture in healthcare organizations and knowledge-based medical diagnosis system. *J. of Inform. Syst. and Technology Management*, 13(2), 181–192. <https://doi.org/10.4301/s1807-17752016000200002>

[83] Sajid, M., & Ahsan, K. (2016b). ROLE OF ENTERPRISE ARCHITECTURE IN HEALTHCARE ORGANIZATIONS AND KNOWLEDGE-BASED MEDICAL DIAGNOSIS SYSTEM. *Journal of Information Systems and Technology Management*, 13(2), 181–192. <https://doi.org/10.4301/S1807-17752016000200002>

[84] Samek, W., Binder, A., Montavon, G., Lapuschkin, S., & Müller, K. R. (2017). Evaluating the visualization of what a deep neural network has learned. *IEEE Transactions on Neural Networks and Learning Systems*, 28(11), 2660–2673. <https://doi.org/10.1109/TNNLS.2016.2599820>

[85] Schmitz, J., & Leoni, G. (2019). Accounting and Auditing at the Time of Blockchain Technology: A Research Agenda. *Australian Accounting Review*, 29(2), 331–342. <https://doi.org/10.1111/AUAR.12286>

[86] Scott, S. V., Van Reenen, J., & Zachariadis, M. (2017). The long-term effect of digital innovation on bank performance: An empirical study of SWIFT adoption in financial services. *Research Policy*, 46(5), 984–1004. <https://doi.org/10.1016/J.RESPOL.2017.03.010>

[87] Seigfried-Spellar, K. C. (2014). Distinguishing the viewers, downloaders, and exchangers of Internet child pornography by individual differences: Preliminary findings. *Digital Investigation*, 11(4), 252–260. <https://doi.org/10.1016/j.dii.2014.07.003>

[88] Sequist, T. D. (2011). Health information technology and disparities in quality of care. *Journal of General Internal Medicine*, 26(10), 1084–1085. <https://doi.org/10.1007/S11606-011-1812-8>

[89] Sharma, S., & Agrawal, N. (2012). Application of fuzzy techniques in a multistage manufacturing system. *International Journal of Advanced Manufacturing Technology*, 60(1–4),

397–407. <https://doi.org/10.1007/S00170-011-3607-9>

[90] Tao, M., Zhenpeng, L., & Jiaxin, Z. (2019). Photovoltaic panel integrated with phase change materials (PV-PCM): technology overview and materials selection. *Renewable and Sustainable Energy Reviews*, 116, 109406. <https://doi.org/10.1016/J.RSER.2019.109406>

[91] Thoben, K. D., Wiesner, S. A., & Wuest, T. (2017). “Industrie 4.0” and smart manufacturing-a review of research issues and application examples. *International Journal of Automation Technology*, 11(1), 4–16. <https://doi.org/10.20965/IJAT.2017.P0004>

[92] Urquhart, L., & Rodden, T. (2017). New directions in information technology law: learning from human–computer interaction. *International Review of Law, Computers and Technology*, 31(2), 150–169. <https://doi.org/10.1080/13600869.2017.1298501>

[93] Vial, G. (2019). Understanding digital transformation: A review and a research agenda. *Journal of Strategic Information Systems*, 28(2), 118–144. <https://doi.org/10.1016/J.JSIS.2019.01.003>

[94] Warner, K. S. R., & Wäger, M. (2019). Building dynamic capabilities for digital transformation: An ongoing process of strategic renewal. *Long Range Planning*, 52(3), 326–349. <https://doi.org/10.1016/J.LRP.2018.12.001>

[95] Wenzelburger, M., Silber, M., & Gadow, R. (2010). Manufacturing of light metal matrix composites by combined thermal spray and semisolid forming processes - Summary of the current state of technology. *Key Engineering Materials*, 425, 217–244. <https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMM.5-6>

[96] Were, M. C., Sinha, C., & Catalani, C. (2019). A systematic approach to equity assessment for digital health interventions: Case example of mobile personal health records. *Journal of the American Medical Informatics Association*, 26(8–9), 884–890. <https://doi.org/10.1093/JAMIA/OCZ071>

[97] Witschel, D., Döhla, A., Kaiser, M., Voigt, K. I., & Pfletschinger, T. (2019). Riding on the wave of digitization: insights how and under what settings dynamic capabilities facilitate digital-driven business model change. *Journal of Business Economics*, 89(8–9), 1023–1095. <https://doi.org/10.1007/S11573-019-00950-5>

[98] Yen, P.-Y., McAlearney, A., Sieck, C., Hefner, J., & Huerta, T. (2017). Health Information Technology (HIT) Adaptation: Refocusing on the Journey to Successful HIT Implementation. *JMIR Med Informatics*, 5(3).

[99] Yoo, Y., Henfridsson, O., & Lyytinen, K. (2010). The new organizing logic of digital innovation: An agenda for information systems research. *Information Systems Research*, 21(4), 724–735. <https://doi.org/10.1287/ISRE.1100.0322>

[100] Zaki, M. (2019). Digital transformation: harnessing digital technologies for the next generation of services. *Journal of Services Marketing*, 33(4), 429–435. <https://doi.org/10.1108/JSM-01-2019-0034/FULL/PDF>