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Abstract- Outpatient pharmacies face increasing 

prescription volumes, more patients on multiple 

medications, and limited staffing, which can affect the 

safety and efficiency of prescription filling. Robotic 

systems can help by handling repetitive tasks such as 

picking, labeling, and storing medications. However, 

people are still needed for tasks such as prioritizing high-

risk prescriptions, responding to alerts, managing 

exceptions, and counseling patients. Recent studies 

indicate that integrating Artificial Intelligence (AI) with 

robotics enables closed-loop prescription verification, 

enhances quality control, and supports system evaluation. 

This review examines peer-reviewed studies from 2020 to 

2025 on the use of AI-enabled robotics in outpatient 

settings, covering pick-and-label robots, machine vision, 

tablet recognition, risk assessment, workflow optimization, 

demand prediction, and management. Following the 

PRISMA 2020 and PRISMA-S guidelines, 1,201 unique 

citations were screened, yielding 77 included publications. 

To assess evidence beyond prediction accuracy, the 

Operating Pharmacy Readiness (OPR) framework is 

introduced to evaluate workflow realism, system 

adaptability, and collaboration between pharmacists and 

robots. Findings show that robots increase prescription 

throughput and reduce delays, while AI is most effective as 

an assistant that tailors alerts to staffing levels and 

provides clear explanations to pharmacists. Studies from 

2024 and 2025 highlight the importance of guideline-based 

monitoring, privacy protection, and adherence to clinical 

reporting procedures during initial implementation. The 

review recommends developing a system architecture, a 

checklist, and a research program to evaluate system 

adaptability and collaboration across sites.  
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I. INTRODUCTION 

 

Outpatient medication management is a routine 

process with significant implications. Errors in 

handling or dispensing can result in near misses or 

patient harm, particularly when incorrect medications 

are dispensed over time. Outpatient pharmacies must 

minimize wait times, ensure accurate labeling, comply 

with insurance and regulatory requirements, and 

provide clear instructions for complex therapies. 

These challenges have intensified due to the rise in 

chronic disease management, high-cost specialty 

drugs, and increasingly complex care pathways 

involving multiple providers. Robotic and automated 

dispensing systems are used to stabilize mechanical 

processes in drug distribution, including picking, 

packaging, labeling, barcode verification, and 

inventory management. Systematic reviews highlight 

their potential to improve safety, efficiency, and cost-

effectiveness, while also addressing practical 

implementation factors such as interoperability and 

redesign (Ahtiainen, 2020). In Saudi tertiary hospitals, 

robotic systems have improved dispensing accuracy, 

inventory management, and staff satisfaction 

(Momattin, 2021; Alanazi, 2022). However, 

automation alone does not address gaps in clinical and 

operational intelligence. Pharmacists remain 

responsible for identifying prescriptions requiring 

further review, interpreting medication alerts, 

managing exceptions, and balancing time between 

medication verification and patient counseling. 

Conventional clinical decision support systems 

generate numerous medication alerts, most of which 

are overridden, contributing to alert fatigue. Recent 

reviews indicate that artificial intelligence can 

optimize medication alerts by reducing alert burden 

and improving relevance, though limitations persist in 

external validation and implementation (Graafsma et 

al., 2024). AI can serve as a real-time guidance system, 

supplementing robotics with risk prioritization, 

improved handoff quality control, and support for 

human investigation. Machine vision and pill 

identification AI verify consistency between products 

and labels before distribution (Heo et al., 2023). These 

AI models can reduce shortages and minimize 
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expiration-related waste when combined with 

restocking strategies. Risk assessment models help 

prioritize complex prescriptions and set safety 

thresholds for staff and patients. Nevertheless, given 

Despite rapid advancements, the literature remains 

fragmented across robotics, computer vision, clinical 

decision support systems, and operations research. 

Studies vary in dataset realism, validation methods, 

and outcome definitions. The reporting structure for 

AI studies necessitates assessments that explicitly 

address workflow integration, human supervision, and 

surveillance processes to avoid misleading 

interpretations (Liu, Vese, and Henderson, 2020; 

Vasey, 2022). Health systems undertaking national 

transformation initiatives, such as Saudi Arabia’s 

Vision 2030, require deployment-specific analyses 

that address patient safety concerns (Ministry of 

Health, 2025).view questions: (1) What kinds of 

artificial intelligence and robotics capabilities have 

been assessed for use in outpatient pharmacy settings 

from 2020 to 2025? (2) What kinds of impacts have 

been documented for medication safety, efficiency, 

and patient outcomes? and (3) What kinds of practices 

appear to have been necessary for real-time usage? 

 

1.1 Objectives and Contribution 

This systematic review synthesizes evidence from 

deployments and addresses the following three aims: 

1) Evidence mapping: Group 2020-2025 evidence into 

capability classes, including robotic dispensing, 

machine vision quality control, AI triage and 

interaction optimization, forecasting and logistics, and 

governance. 

2) Readiness synthesis: Compare evidence using the 

Operational Pharmacy Readiness (OPR) framework, 

which prioritizes workflow feasibility, leakage 

control, robustness to drift, and investigator-centricity 

regarding explainability and governance. 

3) Practical outputs: Develop a reference architecture 

for real-time AI assistance in outpatient robotic 

pharmacies, aligned with current reporting 

recommendations (Page et al., 2021; Rethlefsen et al., 

2021; Vasey et al., 2022; NIST, 2023). 

 

II. BACKGROUND 

 

Outpatient pharmacy automation includes barcode 

verification, automated dispensing cabinets, 

centralized dispensing robots, unit-dose packaging, 

and closed-loop medication management systems. In 

robotic dispensing, high-volume products are stored in 

canisters or racks and retrieved mechanically for 

labeling, verification, and packaging. Exceptions are 

managed manually. The value of robotics lies in 

operational stability, including reduced picking 

variability, improved traceability, and better inventory 

management. However, outpatient medication safety 

requires more than accuracy. Ensuring clinical 

appropriateness, managing drug interactions and high-

alert drugs, and providing patient education are 

essential to prevent harm. AI-assisted outpatient 

robotic pharmacy functions as a socio-technical 

system with four overlapping components: 

mechanical, clinical, operational, and governance. 

Pharmaceutical AI extends to dosing calculations and 

adverse reaction prediction. Systematic reviews 

published in 2025 show significant opportunities for 

applying research, but challenges remain regarding 

data quality and alignment of predictions with clinical 

workflows (Alqahtani et al., 2025). In ambulatory 

settings using robotic prescription fulfillment, AI 

helps reduce pharmacists' cognitive load by 

prioritizing prescriptions for review and supporting 

system robustness through monitoring and safe 

recovery mechanisms. The PRISMA 2020 publication 

guidelines (Page et al., 2021) and extension PRISMA-

S (Rethlefsen et al., 2021) on transparent reporting of 

literature searches informed protocol decisions. 

Protocol decision recommendations on evidence 

synthesis practice (Aromataris & Munn, 2020) also 

informed our approach. As the literature covers 

prototypes of engineering design and observational 

and mixed-methods evaluation studies, we employed 

narrative and thematic synthesis. 

 

Inclusion criteria: Only peer-reviewed literature 

published during the years 2020 through 2025, 

exploring at least one aspect of AI or robotics in the 

outpatient or ambulatory setting, was included. 

Studies that assessed only inpatient cabinets, 

editorials, drug discoveries, and studies with no 

detailed information on the methods were excluded. 

Sources and search strategy: Databases included were 

PubMed/MEDLINE, IEEE Xplore, Scopus, and Web 

of Science. A combination of search terms related to 

outpatient/ambulatory pharmacies, 

robotics/automation, AI/ML, and pharmacological 

management outcomes, along with AI/ML-related 
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terms, was used. Backward and forward citation 

searches were done starting from essential reviews and 

highly cited studies. PRISMA-S was used to record the 

databases searched, the dates, and the removal of 

duplicates. Study Selection 

 

The titles and abstracts were then screened, followed 

by a full-text review. Any discrepancies were resolved 

through discussion. A PRISMA-style flow diagram is 

provided in Fig. 1. Extraction and synthesis of data: 

The following data were extracted from the studies: 

Setting, scale, system components, validation method, 

and outcome. The outcome measure was further 

classified into Safety, Efficiency, Patient Experience, 

and Process Quality. The synthesis of evidence was 

carried out on the basis of capability class and from the 

OPR perspective. 

 

Quality Appraisal & OPR Lens: 

In our study, for quality appraisal, a pragmatic quality 

appraisal tool following AI quality appraisal 

recommendations was considered, where more 

importance is given to ‘workflow context’ and 

‘leakage control’ along with ‘quality measurement’ 

and ‘human monitoring’ and ‘monitoring’ respectively 

(Vasey et al., 2022). Finally, evidence synthesis was 

obtained by considering ‘OPR lens’ which consists of 

‘OPR-1’ ‘workflow realism & leakage control,’ ‘OPR-

2’ ‘rob 

 

IV. RESULTS 

 

4.1 Study selection and Evidence Map 

Figure 1: Summary of study identification and 

selection. The literature reviewed (n=77) covers 

evaluations of robot dispensing systems, computer 

vision-assisted QC processes, AI-driven decision 

support for prescription evaluation, and guidance on 

governance/reporting. The subjects fall across 

different eras. The early years focus on robotics and 

automation. The period from 2023 to 2025 ranges 

from alert optimization using AI to governance. 

 

4.2 Study characteristics 

These studies include the outpatient pharmacies found 

in the tertiary hospitals, the Ambulatory Specialty 

Clinics, and the Community networks. Control 

Before-after studies are quite prevalent in robotics 

implementation, given the nature of the approach, 

where the system is designed at the Workflow level. 

Research on the AI Model Development tends to show 

more retrospectives, with a smaller number piloting 

prospectively or Shadow mode, due to the translation 

hurdles, as mentioned in the earliest recommendations 

on research evaluation practices by Vasey et al. in 

2022. 

 

4.3 Robotics and Automation Results 

Typical studies on the use of robotics in dispensing 

units report faster turnaround times, fewer mechanical 

picking errors by the robot arm, and enhanced 

inventory traceability. The usability and outcomes 

assessment in the Saudi hospital setting indicated that 

the use of the robot in the pharmacy operation for a 

total of 21 months affected the robot's performance 

and acceptance in the hospital setting (Momattin et al., 

2021). Literature reviews on the impact on the 

performance level show the effect depends on the 

configuration of the system utilization and IS use 

(Ahtiainen et al., 2020). 

 

4.4 Decision Support and Alert Optimization in AI 

Applications of AI in the outpatient setting for 

dispensing involve risk scoring and triage of 

medication for review, and optimizing medication 

alerts to prevent alert fatigue. According to a scoping 

review by Graafsma et al. (2024), AI methods have 

reduced alert overload and enhanced the detection of 

unusual medication prescribing, although external 

validation and implementation testing are uncommon. 

 

4.5 Computer Vision and QC 

Computer vision algorithms have also been evaluated 

for pill identification and label validation. By 

demonstrating a validated deep-learning algorithm for 

automatic pill identification that combines image and 

imprint recognition with language-based correction to 

identify potentially unsafe medications, its availability 

and usability for safe identification have been 

established (Heo et al., 2023). In outpatient robots, 

these identification components can be placed within 

QC barriers prior to drug distribution to enhance audit 

trails. 

 

4.6. Forecasting, inventory, 

The literature on forecasting and inventory 

optimization focuses on optimization, like maximizing 

fill rates, preventing stockouts, and minimizing waste 
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due to expiry. The literature is most applicable when it 

addresses issues related to decision-making using 

forecasts, for example, reorder points. The literature 

on AI in clinical pharmacies addresses operational 

optimization, though reporting of operational success 

varies (Alqahtani et al., 2025).  

 

4.7 OPR OPR-1 realistic workflow simulation, 

leakage prevention: 

 Transferable study key C&E points utilize temporal 

validation. OPR-2 robustness against concept drift: 

Clinical formularies, seasonality introduce concept 

drift; thus, monitoring and recalibration standard 

operating procedures are required. Cross-study 

analysis can be undermined by privacy constraints; 

federated learning for privacy-preserving 

collaboration has emerged (Teo et al., 2024). OPR-3 

explainability, governance: C&E narratives must 

enable investigators to take appropriate action, along 

with audit-trail functionality that records overrides. 

Risk management infrastructure focuses on 

governance and monitoring (NIST, 2023). 4.8 

Outcome measures for evaluation of outpatient robotic 

pharmacies.  

 

Measuring outcomes is one of the most important 

aspects in the literature that was reviewed. Outcomes 

that are time-related, for example, turnaround time, 

waiting time, throughput, and the number of detected 

dispensing errors by verification or post-dispense 

audits, are some of the most frequently used in 

research involving robotics and automation. These 

outcomes are extremely vulnerable to variations in 

definitions. For example, the definition of turnaround 

time can vary from the time of prescription receipt to 

payment confirmation. In addition, the classification 

of the number of dispensing errors includes robotic 

picking errors, labeling errors, and medically incorrect 

decisions for dispensing. This variation makes it 

difficult to interpret the implications of the 

performance gains. To improve the ease of 

comparison of results, it is recommended that the 

results be assessed using a minimum core set that is 

representative of the typical outpatient dispensing 

process. Some of the measures that can be taken into 

consideration are: (i) prevented dispensing errors, (ii) 

unprevented errors, (iii) exception rates and miss rates 

that send the data to human processing, (iv) patient 

waiting time, such as median and tail, (v) allocation of 

time to verification, counseling, and exception 

handling, and (vi) alert burden and override rates for 

clinical decision support systems. In addition, the 

frameworks for evaluation should also take into 

consideration the socio-technical aspects of 

automation and decision support systems. The 

common study design for the evaluation of robotics 

implementation is a controlled before-and-after 

design. However, for the evaluation of 

implementation, it is essential to take into 

consideration the co-interventions, which may include 

human resource allocation. Within the specific use 

case of decision support systems incorporating 

artificial intelligence, simply assessing system 

performance in the offline environment is not 

sufficient to prove clinical benefit. The first phase of 

assessment in evaluation studies should be focused on 

clinician in the loop validation, in an attempt to 

confirm that a significant benefit for decision-making 

is provided by the system prior to widespread use. The 

next phase should be focused on long-term assessment 

for clinical safety and efficacy in the real-world 

environment, in keeping with the emerging guidelines 

for assessment in the clinical environment for artificial 

intelligence (Vasey et al., 2022). Additionally, 

guidelines for reporting clinical trials involving 

artificial intelligence have increased in stringency for 

information about clinical workflows (Liu et al., 

2020). Outcome assessment for decision support 

systems incorporating artificial intelligence should be 

performed in a way that takes into consideration task-

specific criteria, keeping in mind the inherent trade-

offs in decision support system design. A decision 

support system, for example, that aims for maximum 

sensitivity for alerts might also be associated with an 

increase in the rate of alerts, hence potentially leading 

to an increase in alert fatigue, a condition associated 

with diminished benefit for early treatment. Future 

studies should consider assessment for: "the threshold 

of calibration, rate of alerts for 100 prescriptions, 

response rate for alerts, and its effects on time for 

review by pharmacists." Lastly, "issues related to 

equity and generalizability should be a priority for 

consideration, not an afterthought. A lot is observed 

for outpatient variation for age, burden of comorbidity, 

proficiency in language, and access to drugs. 

Performance decay across sites could potentially be an 

issue for variations in formularies, prescribing, and 

documentation, hence potentially making it difficult to 



© JAN 2026 | IRE Journals | Volume 9 Issue 7 | ISSN: 2456-8880 
DOI: https://doi.org/10.64388/IREV9I7-1713906 

IRE 1713906          ICONIC RESEARCH AND ENGINEERING JOURNALS 1986 

compare. Longitudinal or stratified analysis might 

provide more information for each site. "Real-time 

learning is possible with privacy-preserving 

dashboards, allowing for tracking trends for 

performance over time (Teo et al., 2024)." 

 

4.9 Human factors, workflow redesign, and adoption 

Robotic and AI-enabled pharmacy systems often fail 

not because the technology is inaccurate, but because 

they do not fit human work. The outpatient pharmacy 

workflow is shaped by implicit heuristics: pharmacists 

know which clinics generate complex prescriptions, 

which prescribers frequently require clarification, and 

which patient groups benefit most from counseling. If 

AI triage is introduced without respecting these 

heuristics, users may ignore or override 

recommendations. Successful implementations tend to 

treat adoption as a redesign problem. First, robots 

change the physical layout and the flow of items. If the 

robot is placed far from the verification station, the 

system can create additional walking and handoff 

friction. Second, exception management is critical. In 

practice, a minority of prescriptions generate a 

majority of interruptions, such as non-standard 

packaging, partial fills, controlled substances, or 

missing insurance approvals. Systems that provide a 

clear exception queue and standardized reason codes 

reduce cognitive load and support improvement. AI 

decision support should be integrated with standard 

operating procedures (SOPs). For example, if the 

model flags a prescription as high risk due to 

polypharmacy and recent renal function changes, the 

pharmacist should have a defined action path: review 

labs, adjust dose per protocol, contact prescriber, or 

provide counseling. Without SOP alignment, the 

model output becomes a vague warning. 

 

Human factors also shape alert fatigue. Clinicians and 

pharmacists develop their own threshold for 

'worthwhile alerts' based on experience. AI alert 

optimization systems that silently suppress alerts can 

be perceived as risky or opaque. Instead, systems can 

present a transparent rationale (e.g., 'historically 

overridden alerts of this type, low severity, no recent 

risk signals') and allow safe override and auditing. 

Logging human overrides and reasoning is not only a 

governance requirement but also a learning signal to 

refine alert policies. Training and change management 

are particularly relevant in multi-lingual outpatient 

settings, including many Gulf region hospitals. Staff 

may vary in familiarity with robots and decision 

support. Implementation plans should include role-

specific training, contingency procedures for 

downtime, and continuous feedback loops. These 

themes align with broader recommendations in 

pharmacy automation reviews that emphasize 

implementation context as a primary determinant of 

outcomes (Ahtiainen et al., 2020). 

 

4.10 Interoperability, data standards, and 

cybersecurity in connected dispensing 

AI-driven outpatient robotic pharmacy relies on the 

integrity of data flows. Orders arrive from EHR or e-

prescription systems, and dispensing outcomes feed 

back into medication administration records and audit 

logs. If interoperability is weak, the system can create 

reconciliation gaps and safety risks. Practical 

interoperability requirements include: consistent 

patient identifiers across systems; standardized 

medication coding; reliable handling of substitutions 

and formulary equivalents; and real-time status 

updates between the robot queue and pharmacist 

worklists. From an AI perspective, the key risk is 

misalignment of labels and outcomes: if the system 

does not reliably record whether a pharmacist acted on 

an alert or corrected a dispensing discrepancy, model 

evaluation becomes unreliable. Cybersecurity is also 

essential because robots and dispensing systems are 

connected devices. Attack surfaces include network 

interfaces, software updates, logs, and user accounts. 

While detailed cybersecurity standards vary by 

jurisdiction, AI risk management practice emphasizes 

access controls, monitoring, incident response, and 

documentation as core governance elements (NIST, 

2023). Therefore, connected outpatient pharmacy 

deployments should adopt network segmentation, 

least-privilege access, secure logging, and downtime 

procedures that allow safe manual dispensing when 

needed. 

4.11 Ethical considerations and trustworthy AI 

 

Trustworthy AI requires more than accuracy. The 

World Health Organization emphasizes ethics and 

governance of AI in health, highlighting principles 

such as protecting autonomy, promoting well-being 

and safety, ensuring transparency, and fostering 

responsibility (WHO, 2021). In outpatient pharmacy, 

these principles translate into concrete choices: 
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patients should not be harmed by over-reliance on AI 

triage; alerts should be explainable and auditable; 

privacy must be protected; and accountability for 

dispensing decisions must remain clear. 

The Global Patient Safety Action Plan 2021-2030 

underscores the goal of eliminating avoidable harm 

and strengthening safety culture (WHO, 2021a). AI 

and robotics can support this goal by standardizing 

processes and enabling better monitoring, but they can 

also introduce new failure modes, such as silent drift, 

automation bias, or workflow disruptions. Ethical 

implementation therefore, requires governance, 

training, and continuous evaluation, not just model 

development. 

 

 
Figure 1. PRISMA-style flow diagram for study 

identification and selection. 

 

 
Figure 3. Evidence map showing the distribution of 

topics across included studies. 

 

4.12 Capability taxonomy 

 

Table 1. Capability taxonomy for AI-driven outpatient 

robotic pharmacy systems (synthesized). 

5. Proposed reference architecture 

5. Proposed reference architecture for real-time AI 

guidance 

 

Figure 2 presents a conceptual architecture for an AI-

driven outpatient robotic pharmacy. The architecture 

treats AI as a real-time decision service integrated with 

robotics and a human-in-the-loop layer. Inputs include 

EHR/EMR orders, patient context, inventory and 

expiry, dispense logs, and prior interventions. AI 

services provide risk triage, interaction, and 

duplication optimization, workload routing, and 

explanation artifacts. Robotic and QC modules 

execute picking and labeling, barcode verification, and 

vision-based checks, routing exceptions to 

pharmacists. A governance layer provides monitoring, 

access control, audit trails, and incident response. 

Design principles derived from the synthesis include 

decision-time integrity, alert budget alignment, 

exception-first integration, explainable handoffs, and 

governance by default. Operational deployment 

typically benefits from staging: shadow-mode scoring, 

limited-scope rollout for a subset of drug classes, and 

gradual expansion with monitoring and periodic 

calibration, consistent with early evaluation guidance 

(Vasey et al., 2022). 

 

 
Figure 2. Conceptual closed-loop architecture for AI-

driven outpatient robotic pharmacy guidance. 

 

5.1 Governance and safety checklist 

Table 2. Governance checklist for AI guidance in 

outpatient robotic pharmacy (synthesized). 

 

 

 

VI. SAUDI VISION 2030 ALIGNMENT 

 

6. Alignment with Saudi Vision 2030 and national 

digital health direction 

Saudi Vision 2030 positions healthcare transformation 

as a national priority, shifting toward a patient-

centered model that improves access, quality, and 

experience. Digital health is described by the Ministry 

of Health as a key enabler for delivering a world-class 
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healthcare experience and improving efficiency 

(Ministry of Health, 2025). AI-driven outpatient 

robotic pharmacy supports these goals in three 

practical ways. 

 

First, improved dispensing safety and accuracy: 

robotics provides traceable standardized mechanical 

procedures, while AI improves alert prioritization to 

allow pharmacists to concentrate on high-risk 

decisions. There could be improved information on 

patient drug interactions. 

 

Secondly, patient care and experience may improve 

due to shorter waiting times and reduced stock-outs. 

With time gained due to automation, patient 

counseling and medication therapy management 

services may be improved. 

 

Third, data-driven quality improvement: closed-loop 

processes generate actionable data (exceptions, 

overrides, and interventions) that can support quality 

and safety efforts. To foster trust, the governance layer 

needs to focus on privacy by design, monitoring, and 

transparent evaluation in accordance with 

contemporary recommendations (Vasey et al., 2022; 

NIST, 2023). 

 

VII. DISCUSSION 

 

7.1 What works reliably: robotics and standardization 

The overall review period highlights various 

performance advantages of robotic and automated 

dispensing systems. The results of various studies 

demonstrate effectiveness in reducing and preventing 

dispensing errors, increased capabilities for tracing 

stock, and increased staff satisfaction related to the use 

of robots in pharmacies in Saudi hospitals (Momattin 

et al., 2021). The importance of various 

implementation considerations is highlighted in 

systematic reviews examining its performance 

advantages (Ahtiainen et al., 2020). 

 

7.2 Where AI brings incremental value: selecting 

attention and combating alert fatigue 

Where human attention is limited, such as in selecting 

prescriptions to review, the value of AI modules is 

highest. Regarding optimizing prescription alerts, 

Graafsma et al. (2024) compiled approaches using AI, 

found evidence of alert optimization, but noted a lack 

of external validation and real-world application. 

While assessing the efficiency of AI in the pre-op 

outpatient robotic system, it should be evaluated not 

only on the AI's output but also on its impact on the 

waiting queue. 

 

7.3 Computer Vision & QC at handoff boundary 

Machine vision, as well as co developed models for 

pill recognition, are becoming more important for the 

handoff from the pharmacy into the outpatient 

environment. For example, a deep-learning approach 

for recognizing a pill was validated by Heo et al. 

(2023) to show the effectiveness of solid recognition 

methods. In the area of outpatient robotics, vision-

based quality control can ensure that the product going 

out has the label claimed, thereby reducing incorrect 

medication incidents. False positives could delay 

delivery. 

 

7.4 Governance: Accuracy to Trustworthiness 

“Governance maturity” distinguishes prototype 

development from deployable system development. 

“Early guidance on assessing prototype maturity 

stresses describing workflows and human review to 

avoid unsafe overconfidence” (Vasey et al., 2022). 

Risk management practices are described in terms of 

governance processes such as documentation, 

monitoring, and incident response (NIST, 2023). 

Ethics guidance discusses responsibility, protection of 

autonomy, “and safety” (WHO, 2021). It’s “easy” to 

“require ‘override’ logs that are auditable, safe 

‘Fallback’ behavior, and ‘Continuous’ performance 

monitoring.” 

 

7.5 Cost, capacity, and return on investment 

Even if cost-effectiveness analysis results are not 

consistently presented, various studies and reports on 

their practical implementation indicate that robots can 

minimize rework and overtime, increase inventory 

accuracy, and enable redirecting employee time to 

more valuable healthcare activities. Additional roles 

for artificial intelligence include minimizing alerts and 

focusing on situations where pharmacist action is most 

likely to prevent adverse outcomes. In that case, ROI 

calculations for healthcare decision-makers would 

involve not just direct ROI but also indirect – safety 

ROI – and patient experience ROI related to shortened 

waiting times.  
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7.6 Evidence gaps A large number of AI research 

studies are restricted to offline assessments.  

Outcomes are often measured differently across 

studies. The future of AI research should include 

evaluation in the context of distribution shifts. Future 

AI research studies should report governance controls 

more specifically. This follows the PRISMA 

guidelines for reporting AI research studies (Page et 

al., 2021; Liu et al., 2020; Vasey et al., 2022).  

 

VIII. LIMIT "THERE IS A LACK OF 

STANDARDIZED TERMINOLOGY, AND 

THE REPORTING CAN BE 

INCONSISTENT," THE REVIEW SAYS. 

 

"There may be automation studies that don't describe 

the AI components at all, and the AI studies may lack 

the context of the workflows. There could be a bias 

towards publications that show successful 

implementations," the review says. "Many of the 

outcomes are proxies, rather than direct measures of 

harm," the review adds. "Finally, the evidence map 

relies on synthesized counts, which should not be 

taken as a measure of the population prevalence," the 

review says. 9. Research Agenda  

 

IX. RESEARCH AGENDA BASED ON 

SYNTHESIS OF OPR, WE PROPOSE 

THREE PRIORITIES. 

 

First, there is a need for drift-sensitive benchmarking. 

Second, there is a need for privacy-compliant cross-

site testing. Third, there is a need for operational 

outcomes that go beyond AUC metrics. Such priorities 

fit well within the context of trusted AI and may help 

speed up outpatient robotic pharmacy decision-

support systems from prototyping to safe operational 

deployment.  

 

X. CONCLUSION 

 

Outpatient robotic pharmacies with AI can be seen as 

a closed-loop socio-technical system. Robotic 

pharmacies improve the mechanical processes 

associated with drug-handling routines, and AI further 

improves these processes by stratifying risk, triaging, 

and notifying, enhancing QC handoffs and 

investigator activity through AI and governance 

controls. Between 2020 and 2025, the literature 

demonstrates sustained functioning and an emerging 

body of evidence for robotics and AI-related strategic 

objectives for decision-support AI and vision-based 

and monitoring and privacy-preserving QC. Future 

directions will rely on drift-adjusted assessment, 

investigator-focused explanation, and standard 

operating outcomes to measure AI and robotics and 

their impact on drug safety and the patient experience. 

 

XI. IMPLEMENTATION ROADMAP 

 

11.1 Implementation Roadmap for Hospitals and 

Large Outpatient Networks 

 

This section moves the outcomes of the systematic 

review to a deployability plan. The goal of this section 

is to ensure an implementation pathway that an 

organization could adapt. 

 

Phase 0: Initial State of Readiness 

 

Starting with baseline measurements of safety, 

throughput, and patient satisfaction means having 

criteria against which future performance can be 

compared. The baseline measures recommended are: 

Prevented dispensing errors (caught before 

dispensing), Unperfected dispensing errors (made and 

then discovered), Median waiting time and Waiting 

time at the 90th percentile, Rate of exceptions, and 

Distribution of pharmacist time on verification and 

counseling. A high-volume and low-volume month 

should also be included. Readiness will also comprise 

assessment of data and workflow. In robotic 

dispensing, there must be standardized drug names for 

consistent identification, standardized label printing, 

and physical storage organization aligned with the 

robot’s mechanical design. In regard to AI, readiness 

would comprise access to semantically rich logging 

that records: “the order, the dispensing route (robotic 

vs. human), alerts produced, whether an alert was 

responded to, and resolution of an alert.” If this 

recording were not possible through the Pharmacy 

Information System, it would be impossible to assess 

effectiveness of AI alerts or optimize alert policies. 

 

Stage 1: Stabilization of robots and exception handling 

Robotics implementations work best when handling 

exceptions is considered first-class workflow. There 

are issues with exceptions in both the edges and the 
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center of the problem: partial fills, substitute brands, 

controlled substances, compounded products, and 

prescription drugs requiring prescriber contact. One of 

the ways an implementation could be flawed is in this 

kind of robotics implementation where exceptions are 

left to be managed in an ad-hoc process. There should 

be an actual exception queue created in standardized 

reason codes and time targets. 

 

Training and change management are also critical. 

Even if robots minimize mechanical tasks, employees’ 

trust in the new process must be gained. Training could 

be specific to roles, with technicians trained in the 

process of loading and maintaining stock, pharmacists 

trained in verification and exception processing, and 

managers trained in monitoring and escalation 

procedures. Training procedures for downtime 

processes must also be practiced, with safe return to 

traditional dispensing procedures. 

 

Phase 2: Implementation of AI in shadow mode 

The decision support process of AI should start in 

shadow mode, where the prescription scoring activity 

is done without an impact on the process. The shadow 

mode process has two key advantages. Firstly, there is 

an estimate of alerting budget, which encompasses the 

number of high-risk warnings per day and their 

probability of distribution based on various medical 

categories and other clinics. The second advantage is 

that it allows for an activity of calibration. The 

DECIDE-AI guidelines follow a staged evaluation 

process that includes decision-support technology 

even before full implementation (Vasey et al., 2022). 

During shadow mode, it is helpful to monitor these 

simple dashboard metrics: dashboard metrics: daily 

alert numbers, risk flags for every 100 prescriptions, 

and annotated sample study. The dashboard could also 

record where the model is making incorrect 

predictions. Frequently, these incorrect predictions 

paint a picture of missing data points or inefficiencies 

because of missing workflow elements. 

 

Phase 3: Limited-scope active deployment 

Once shadow mode and calibration, limited-scope AI 

DS, followed. Limited scope might be limited to a set 

ofclasses of medications (e.g., high-alert medications), 

a set of clinics, or a set of activities (e.g.,-pill vision 

QC at the time of product distribution). Limited scope 

mitiges many risks and makes it simpler to assess. It is 

at this point where operationalizing governance 

occurred, where the justifications for overwriting are 

recorded, along with review of incidents that include 

signals/robot logs. 

 

Phase 4: Scaling, Standardizing & Optimizing 

Scaling up the system for the outpatient offices 

involves consistency for the following: drug coding 

schemes, label formats, robot drug stocking strategies, 

and SOP protocols for review and counseling. This 

will facilitate inter-site comparisons and improve 

training. For situations that require inter-site learning 

for the development of best practices for improvement 

but where the data may not be shared due to patient 

confidentiality requirements, privacy-preserving 

collaboration methods such as federated learning 

methods may be considered and reviewed as recent 

systematic review evidence (Teo et al., 2024) 

recommends. AI alert tuning for scaled-up 

implementation becomes a continuous process 

improvement effort because the thresholds for alerts 

will be set based on the target safety objectives and 

staff capabilities based on periodic model 

recalibration. 

 

Phase 5: Patient-centered extensions 

After establishing the fundamental dispense loop, 

there are several areas where AI can aid patient care 

more directly: patients at risk for nonadherence 

identification, patients for whom counseling outreach 

is prioritized, and medication therapy management. 

These areas should be managed carefully because they 

involve overall patient context. 

 

 

 

 

 

 

XII. MONITORING & DRIFT MANAGEMENT 

 

12.1 Monitoring, Drift, and Operational MLOps in 

Outpatient Pharmacy  

"Operational success is not determined on one 

evaluation cycle. The operations of an outpatient 

pharmacy facility involve changing processes with 

regard to updates in formularies, trends in prescribing 

practices, new staff members, and changes in 

documentation practices. This leads to distribution 
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shift. A good AI-enabled pharmacy should facilitate 

monitoring and drift handling." It should be 

multilayered. 1. Monitoring data quality: identifying 

missing values, changes in coding, and input 

distribution irregularities. 2) Model Performance 

Evaluation: Calibration, alert correctly classified, 

false-positive fraction, and sampled outcome 

validation. 3) Workflow monitoring: tracking queues, 

exception rates, and wait time distributions to verify 

that the system does not introduce bottlenecks. Since 

the labels (true errors prevented) are frequently 

delayed or incomplete, monitoring needs to rely on the 

use of surrogate indicators. For example, a sudden 

surge in the rate of overrides for a certain type of alert 

could be a sign of a lack of correspondence between 

the AI model and the present reality. For instance, a 

surge in exceptions for a certain category of drugs 

could be a sign of a stock configuration issue rather 

than an issue with AI. To offer more context, risk 

management best practices, such as the NIST AI Risk 

Management Framework, highlight documentation, 

monitoring, and response activities (NIST, 2023). 

What these best practices are saying, in terms of 

application, is to identify a trigger mechanism to begin 

an investigation, along with specifying a safe fallback 

option. For instance, given a data pipeline failure issue 

in the AI triage system, they should fall back to rules 

review. 

 

"Audit trails are also important. Each recommendation 

provided by AI ought to be recorded using time 

stamping, context, and follow-through action. This is 

important with regard to traceability, which has been 

considered key in the context of health ethics for AI 

(WHO, 2021). Lastly, transparency in outpatient 

pharmacy can be achieved without showing patients 

internal workings of the predictive models but with the 

capacity to track decisions in a way that allows a 

practitioner to understand why the recommendation 

has been provided and to follow through to ensure the 

system is functioning properly." Finally, monitoring 

aids in making learning safe. Many businesses would 

like to optimize models in production. Continuous 

learning needs to be managed with strict versioning 

and validation gates. This can be implemented with a 

“quarterly revalidation loop: test on fresh data, check 

for drift indicators, and update thresholds if required.” 

Additionally, “shadow mode can be used periodically 

to evaluate proposed model updates without impacting 

the current workflow.” 

 

XIII. PATIENT OUTCOMES LINKAGE 

 

13.1 Patient Outcomes: Connecting Automation and 

Artificial Intelligence to Clinical and Experience 

Outcomes 

 

Direct measurement of the clinical outcomes resulting 

from outpatient robotic pharmacies is difficult. 

Adverse events are relatively rare, and many variables 

can affect the outcome. However, a number of valid 

mechanisms between automation and patient 

outcomes are supported by existing literature. 

 

First, there will be fewer dispensing errors and 

improved quality control, which translates to fewer 

chances of a patient being given a wrong medicine or 

a wrong dosage or directions. Although wrong-drug 

errors may be low, minimizing near misses and 

discrepancies enhances patient safety and decreases 

rework. Second, fewer waiting times and improved 

product availability improve patient satisfaction. If a 

patient is unable to get his/her medicines on time, he 

or she may stop treatment due to missed doses. Third, 

automation may enable the pharmacist to counsel 

more patients. One of the crucial points that emerged 

from this literature review is that the value of patient 

benefit provided by AI is reliant on whether there is 

resultant pharmacistor or pharmacist actions affected 

by AI? It is possible that there could be no resultant 

benefit if an AI system is capable of providing risk 

factors but does so outside of its workflow path, 

meaning there is no benefit to patient outcome. The 

World Health Organization’s “Global Patient Safety 

Action Plan” highlights enhancing systems to 

minimize avoidable harm (WHO, 2021a). The 

“outpatient robotic pharmacy” can be considered a 

system-level intervention with an approach to 

minimize “process variability” and “traceability.” The 

“AI” can enhance this system by “improving attention 

allocation” and “QC.” The “robotics” and “AI” can 

work together to enable a “safer” and “patient-centric” 

“outpatient pharmacy” experience. 

 

11. Implementation Roadmap 

11.1 Implementation Roadmap for Hospitals and 

Large Outpatient Networks 



© JAN 2026 | IRE Journals | Volume 9 Issue 7 | ISSN: 2456-8880 
DOI: https://doi.org/10.64388/IREV9I7-1713906 

IRE 1713906          ICONIC RESEARCH AND ENGINEERING JOURNALS 1992 

This section translates the outcomes of the systematic 

review into a deployability plan. The objective is to 

provide an implementation pathway that organizations 

can adapt to their respective contexts. 

Phase 0: Initial State of Readiness 

Establishing baseline measurements of safety, 

throughput, and patient satisfaction provides criteria 

for future performance comparison. Recommended 

baseline measures include: prevented dispensing 

errors (caught before dispensing), unprevented 

dispensing errors (made and then discovered), median 

waiting time, waiting time at the 90th percentile, rate 

of exceptions, and distribution of pharmacist time on 

verification and counseling. Data should be collected 

for both high-volume and low-volume months. 

 

Readiness also requires assessment of data and 

workflow. For robotic dispensing, standardized drug 

names, label printing, and physical storage 

organization aligned with the robot’s mechanical 

design are essential. For AI, readiness includes access 

to semantically rich logging that records: “the order, 

the dispensing route (robotic vs. human), alerts 

produced, whether an alert was responded to, and 

resolution of an alert.” Without such recording 

capabilities in the Pharmacy Information System, it is 

not possible to assess the effectiveness of AI alerts or 

optimize alert policies. 

 

Stage 1: Stabilization of robots and exception handling 

Robotics implementations are most effective when 

exception handling is integrated as a primary 

workflow. Exceptions may arise from partial fills, 

substitute brands, controlled substances, compounded 

products, and prescriptions requiring prescriber 

contact. Implementations that manage exceptions in an 

ad-hoc manner are prone to failure. Establishing a 

standardized exception queue with reason codes and 

time targets is recommended. 

Training and change management are essential for 

successful implementation. Although robots reduce 

mechanical tasks, building trust among workers in 

new processes is necessary. Training should be role-

specific: technicians in stock loading and 

maintenance, pharmacists in verification and 

exception processing, and managers in monitoring and 

escalation procedures. Downtime procedures must 

also be practiced to ensure a safe transition to 

traditional dispensing when required. 

 

Phase 2: Implementation of AI in shadow mode 

The decision The AI decision support process should 

begin in shadow mode, where prescription scoring 

occurs without affecting the operational workflow. 

Shadow mode offers two main benefits: it enables 

estimation of the alerting budget, including the 

number and distribution probability of high-risk 

warnings across medical categories and clinics, and it 

facilitates calibration activities. The DECIDE-AI 

guidelines recommend a staged evaluation process 

that incorporates decision-support technology prior to 

full implementation (Vasey et al., 2022).In shadow 

mode, it is helpful to monitor these simple dashboard 

metrics: daily alert numbers, risk flags for every 100 

prescriptions, and annotated sample study. The 

dashboard could also record where the model is 

making incorrect predictions. Frequently, these 

incorrect predictions paint a picture of missing data 

points or gaps because of missing workflow elements. 

 

Phase 3: Limited-scope active deployment 

Once shadow mode and calibration are complete, 

implementation should proceed with limited-scope AI 

decision support. This may involve restricting 

deployment to specific medication classes (such as 

high-alert medications), selected clinics, or particular 

activities (such as pill vision quality control during 

product distribution). Limiting scope reduces risks and 

simplifies assessment. At this stage, governance 

should be operationalized by recording justifications 

for overrides and reviewing incidents, including 

analysis of signals and robot logs. System for the 

outpatient offices involves consistency for the 

following: drug coding schemes, label formats, robot 

drug stocking strategies, and SOP protocols for review 

and counseling. This will facilitate inter-site 

comparisons and improve training. For situations that 

require inter-site learning to develop best practices for 

improvement but where data may not be shared due to 

patient confidentiality requirements, privacy-

preserving collaboration methods, such as federated 

learning, may be considered and reviewed, as recent 

systematic review evidence (Teo et al., 2024) 

recommends. AI alert tuning for scaled-up 

implementation becomes a continuous process 

improvement effort because alert thresholds are set 

based on target safety objectives and staff capabilities, 

and adjusted periodically. 
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Phase 5: Patient-centered extensions 

Once the fundamental dispensing loop is established, 

AI can additionally aid patient care by identifying 

patients at risk for nonadherence, prioritizing 

counseling outreach, and assisting with medication 

therapy management. These applications call for 

cautious management due because of their reliance on 

a comprehensive patient context. 

 

12. Monitoring & Drift Management  

12.1 Monitoring, Drift, and Operational MLOps in 

Outpatient Pharmacy  

"Successful operation is not determined on one 

evaluation cycle. The operations of an outpatient 

pharmacy facility involve changing processes with 

regard to updates in formularies, trends in prescribing 

practices, new staff members, and changes in record-

keeping procedures. This leads to a distribution shift. 

A good AI-enabled pharmacy should facilitate 

monitoring and drift handling." It should be 

multilayered. 1. Monitoring data quality: identifying 

missing values, changes in coding, and input 

distribution irregularities. 2) Model Functionality 

Evaluation: Calibration, alert correctly classified, 

false-positive fraction, and sampled outcome 

validation. 3) Workflow monitoring: tracking queues, 

exception rates, and wait duration profiles to verify 

that the system does not introduce bottlenecks. Since 

the labels (true errors prevented) are frequently 

delayed or incomplete, monitoring needs to rely on 

surrogate indicators. For example, a sudden surge in 

the rate of overrides for a certain type of alert can 

represent a mismatch between the AI model and 

current reality. For instance, a spike in exceptions for 

a certain category of drugs could be a sign of a stock 

configuration issue rather than an issue with AI. To 

offer expanded explanation, risk management best 

practices, such as the NIST AI Risk Management 

Framework, highlight documentation, monitoring, and 

response activities (NIST, 2023). What these best 

practices are saying, in terms of application, is to 

identify a trigger mechanism to initiate an 

investigation and specify a safe fallback option. For 

instance, if there is a data pipeline failure in the AI 

triage system, they should fall back to rules-based 

review. 

 

"Audit trails are also important. Each recommendation 

provided by AI should be recorded with a timestamp, 

context, and a subsequent step. This is important for 

traceability, which has been considered key in the 

context of health ethics for AI (WHO, 2021). Lastly, 

transparency in outpatient pharmacy can be achieved 

without showing patients internal workings of the 

prediction algorithms, but with the capacity to track 

decisions in a way that allows a practitioner to 

understand why the recommendation has been 

provided and to follow through to ensure the system is 

functioning properly." 

 

Finally, monitoring helps make learning safe. Many 

businesses would like to optimize models in 

production. Sustained learning needs to be managed 

with strict versioning and validation gates. This can be 

implemented with a “quarterly revalidation loop: test 

on fresh data, look for drift indicators, and update 

thresholds if required.” Additionally, “shadow mode 

can be used periodically to evaluate proposed model 

updates without impacting the current workflow.” 

 

13. Patient Outcomes Linkage 

13.1 Patient Outcomes: Connecting Automation and 

Artificial Intelligence to Clinical and Experience 

Outcomes 

Direct measurement of clinical outcomes resulting 

from outpatient robotic pharmacies is challenging, as 

adverse events are infrequent and multiple variables 

determine results. Nevertheless, existing literature 

supports several valid methods relating automation to 

better clinical outcomes. 

 

First, automation reduces dispensing errors and boosts 

quality control, decreasing the likelihood that patients 

are given incorrect medications, dosages, or 

instructions. Even when wrong-drug errors are rare, 

minimizing near misses and discrepancies improves 

patient safety and reduces rework. Second, shorter 

waiting times and better product availability increase 

patient satisfaction, as timely access to medications 

supports adherence. Third, automation may allow 

pharmacists to counsel a greater number of patients. A 

crucial conclusion from the literature review is that the 

patient benefit provided by AI depends on whether it 

leads to changes in pharmacist actions. If an AI system 

identifies risk factors but operates outside the 

workflow, it may not improve patient health results. 
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The World Health Organization’s “Global Patient 

Safety Action Plan” emphasizes enhancing 

approaches to curtail avoidable harm (WHO, 2021a). 

Outpatient robotic pharmacy represents a system-level 

intervention aimed at reducing process variability and 

increasing traceability. AI has the potential to augment 

this system by improving attention allocation and 

quality control. Together, robotics and AI can support 

a safer and more patient-centric outpatient pharmacy 

experience. 

 

XIV. CONCLUSION 

 

This systematic review demonstrates that the concern 

with AI in the outpatient robotic pharmacy service 

domain should not be considered in a conceptual 

stand-alone form, but rather as a part of a closed-loop 

system in which robotics, AI, human expertise, and 

mechanisms all play a definitive role in how safe the 

system will operate, how effective it will be, etc. 

 

For example, in the period from 2020-2025, the state 

of the evidence with regard to robotic pharmacy from 

the literature will demonstrate a strong state with 

regard to the concerns with regard to robotic machine 

reliability, throughput, inventory traceability, etc. 

provided that the concern with the allocation of the 

scarce resources also demonstrates that AI will play a 

considerable, incremental value in that decision 

process, with the human cognitive ability being quite 

limited in that decision process with regard to issues 

such as alert prioritization, quality control handoffs, 

etc. 

 

Finally, an outpatient robotic pharmacy, facilitated by 

artificial intelligence, is likely to assume its proper 

place as an augmentive system, a term that refers to a 

system that supports or augments judgment, not 

replaces it. While we move forward in this field, more 

emphasis will likely lie in integration, not algorithms. 

Integration includes incorporating artificial 

intelligence outputs into human processes, 

government by default, and continuous evaluation. 

Obviously, when all of these elements are properly 

addressed, artificial intelligence and robotics together 

promise to drive medication efficiency and safety, 

along with patient-focused pharmacy practice, in 

outpatient settings. 
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