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Abstract - A one-step third-derivative parameter-

dependent general linear method is proposed for the 

numerical solution of stiff ordinary differential 

equations. The method is constructed within the general 

linear methods framework and incorporates solution 

derivatives up to the third order, providing additional 

flexibility for accuracy and stability control. An implicit 

formulation is adopted and the free parameters are 

determined by enforcing consistency and fourth-order 

accuracy conditions. Stability analysis based on the linear 

test equation shows that the resulting rational stability 

function satisfies the A-stability property and, in addition, 

achieves L(α)-stability, as the stability function vanishes 

for large negative values of the stiffness parameter. This 

ensures strong damping of stiff components and 

suppresses nonphysical oscillations. The proposed 

scheme is a one-step, fourth-order, L(α)-stable method 

that combines high accuracy with excellent stability 

characteristics, making it suitable for stiff initial value 

problems. 

 

I. INTRODUCTION 

 

The numerical solution of initial value problems 

(IVPs) for ordinary differential equations (ODEs) 

plays a fundamental role in many areas of science and 

engineering, including fluid dynamics, chemical 

kinetics, electrical circuit simulation, control theory, 

and biological modeling. In many of these 

applications, the governing systems exhibit stiffness, 

a phenomenon characterized by the presence of 

widely separated time scales, which imposes severe 

restrictions on the step size when explicit numerical 

methods are employed. As a consequence, the 

development of numerical integrators that are both 

accurate and strongly stable remains a central topic in 

numerical analysis. (See Moradi (2025)). Qin et al 

(2024) opined that classical explicit Runge–Kutta 

methods, although widely used because of their 

simplicity and high order of accuracy, suffer from 

limited stability regions and therefore become 

inefficient or even unusable for stiff problems. On the 

other hand, implicit linear multistep methods, in 

particular the backward differentiation formulas 

(BDF), possess excellent stability properties and are 

well suited for stiff systems. However, multistep 

methods require several starting values, are less 

flexible in variable step-size implementations, and 

may suffer from order reduction or loss of stability in 

certain situations. These limitations have motivated 

the search for alternative numerical methods that 

combine the advantages of one-step schemes with 

strong stability properties see (Sarshar et al (2021)) . 

 

According to Sharfi et al (2024). General linear 

methods (GLMs), originally introduced by Butcher 

and further developed by many authors, provide a 

unifying framework that includes both Runge–Kutta 

and linear multistep methods as special cases. Within 

this framework, it is possible to construct one-step 

methods with multiple internal stages and rich 

stability and accuracy properties. In particular, the 

use of Nordsieck-type representations allows the 

method to propagate not only the numerical solution 

but also scaled derivatives, leading to enhanced 

flexibility and improved control over stability and 

error propagation. 

 

In recent years, there has been growing interest in 

numerical methods that make explicit use of higher 

derivatives of the solution. Such methods, often 

referred to as higher-derivative or multiderivative 

methods, have been shown to achieve high order of 

accuracy with fewer stages and to offer additional 

free parameters that can be exploited to optimize 

stability properties. In the context of stiff problems, 

these additional degrees of freedom are especially 

valuable, as they allow the construction of methods 

with enlarged stability regions and improved 

damping of unwanted high-frequency components 

(see Izzo and Jackiewicz (2025)). 

 

Guatam and Pandey (2025) opined that among the 

most important concepts in the numerical treatment 
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of stiff differential equations is the notion of A-

stability and its stronger variant, L(α)-stability. A 

numerical method is said to be A-stable if its region 

of absolute stability contains the entire left half of the 

complex plane, ensuring that the numerical solution 

does not grow when applied to the linear test equation 

with a negative real part. However, for very stiff 

problems, A-stability alone is often insufficient, since 

slowly decaying numerical modes may persist. The 

stronger concept of L(α)-stability requires, in 

addition, that the stability function tends to zero as 

the stiffness parameter tends to minus infinity, 

thereby guaranteeing strong damping of highly stiff 

components and preventing spurious oscillations in 

the numerical solution. 

 

Motivated by these considerations, this work is 

devoted to the construction and analysis of a one-step 

third-derivative parameter-dependent general linear 

method that satisfies the L(α)-stability property. By 

incorporating derivatives of the solution up to the 

third order, the proposed method introduces 

additional free parameters that can be systematically 

chosen to satisfy high-order consistency conditions 

while simultaneously enforcing strong stability 

requirements. An implicit formulation is adopted in 

order to obtain a rational stability function whose 

denominator dominates the numerator, a key 

requirement for achieving L(α)-stability. 

 

The main objective of this study is to derive a fourth-

order accurate one-step method within the GLM 

framework that combines the advantages of high-

order accuracy, single-step implementation, and 

excellent stiff stability properties. The stability 

function of the proposed method is analyzed using 

the standard linear test equation, and the necessary 

conditions for A-stability and L(α)-stability are 

established. The resulting scheme is shown to possess 

strong damping characteristics, making it particularly 

suitable for the efficient numerical integration of stiff 

systems. 

 

Let consider the IVPs  

00 )()),(,()( yxyxyxfxy ==          (1) 

be the class of methods for integrating numerical 

solution to initial value problems in stiff differential 

equation. Where ))(,( xyxf  and )(xy may be 

vectors. Methods in this regard can be seen in the 

works of [12] and these methods produce 

approximate solution kny +  to y( knx + ). Here, we 

seek the numerical solution of this problem using a 

third derivative parameter dependent general linear 

method obtained by the modification of discrete 

second derivative method in (1) with the assumption 

that higher derivatives are available 
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The third derivative methods use 

licitlyyandyf exp,   

 

II. THIRD DERIVATIVE PARAMETER 

DEPENDENT GENERAL LINEAR METHOD 

(TD-PD-GLM) 

 

Let 
rny ][
be the external stage vector and 

snY ][
the internal stages. A third-derivative 

parameter dependent general linear method (TD-PD-

GLM) has the form 
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Where )(),(),( ][][][ nnn YyYyYf  are first, second and third derivatives, 
][ny  is the external vector and 

][nY  

the internal stages and VUBBBAAA ,,
~

,ˆ,,
~

,ˆ,  are coefficient matrices and  and,  are free parameters 

controlling accuracy and stability? 

 

Constructing a one-step third derivative parameter dependent general linear formula which is implicit in nature, 

we extend (3) to 

1

4

1

3

1
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III. ANALYSIS OF THE L(Α)-STABILITY 

 

In this section, we analyze the L(α)-stability 

properties of the methods in (4).   
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Definition 3.1: According to Adoghe et al (2024). A 

numerical method is said to be A-stable if 

0)(,1)(  zzR . 

Definition 3.2: According to Adoghe et al (2024). A 

numerical method is said to be L(α)-Stable if it is A-

stable and satisfy 0)( =
−→

zRLim
x

  

Definition 3.3: According to Adoghe et al (2024). A 

method is said to be Parameter Dependent if it 

contain free parameters  and, and all lies 

between 10 and for a smooth and better stability 

accuracy.. 

 

Applying the methods in (4) to the Dahlquist test equation andyyyy 2/ ,  ==  yy 3=
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Then the stability function is  
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Since the denominator is a polynomial of degree four, it follows immediately that   

0)( =
−→

zRLim
x

                                                                                                                       (8) 

Provided 0
.
Therefore, the method is a candidate for L(α)-stability

  

4.0 Order Condition 

The exact solution of the test equation of )(zR in (7) satisfies 

)(
2462

1)( 5
432

zO
zzz

zzR z +++++==                                                                              (9) 

Which implies  )(
2462

1
1

1 5
432

432
zO

zzz
z

zzzz
+++++=

−−−− 
                            (10) 

To obtain a fourth-order accurate method, we require that the Taylor expansion of R(z) agrees with 
z  up to 

terms of order 
4z . Inverting the denominator and expanding R(z) in a power series yields 

...)231()21()1(1)( 432 +++++++++++= zzzzzR                                        (11) 

Comparing the coefficient (11) to that of (10), gives the system of equations below; 
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Solving for the values of  and, from the system of equation in (12) yields; 

24

1

6

1
,
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1
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Substituting the values for  and,  in (4), gives the general formula of the method below 
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Therefore,  the corresponding stability polynomial is 
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Since  

                          0)( =
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The method satisfies the L(α)-stability condition. 

This method is very robust and powerful because it possesses the following  

a. a one-step method,  

b. a fourth-order method,  

c. uses third derivative scheme and an implicit method.   

d. an L-stable method properties with strongly stiffly damped.  

e. Superiority over the RK4 and BDF2 in stiffness handling.  

 

 
Fig 1: shows the stability curve of the L(α)-stable TD-PD-GLM 

 

The region inside the curve is the stability region of 

the method. The method possesses a very stiff modes 

which are strongly damped and no spurious 

oscillations for large negative z and this shows that 

the method is L(α)-stable.  

 

V. NUMERICAL EXPERIMENT 

 

According to Olumurewa (2024).The new method 

provides an efficient framework for solving stiff, 

non-stiff, linear and non-linear and real life problems 

in Ordinary Differential Equations (ODEs). By 

incorporating second and third derivative 

information and tunable parameters, the method 

balance accuracy and stability. This paper 

demonstrates the application of the method on two 

problems i.e. stiff test and nonlinear non-stiff 

problems: Both problems showcase the accuracy, 

stability of the method. 

 

The L(α)-stable one-step fourth-order TD-PD=GLM is given as  
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Problem 1: (Stiff test problem) 
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X Numerical Exact Error 

0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 

1.00000000e-01 3.69230769e-01 3.67879441e-01 1.35132806e-03 

2.00000000e-01 1.36331361e-01 1.35335283e-01 9.96077710e-04 

3.00000000e-01 5.03377333e-02 4.97870684e-02 5.50664905e-04 

4.00000000e-01 1.85862400e-02 1.83156389e-02 2.70601089e-04 

5.00000000e-01 6.86261168e-03 6.73794700e-03 1.24664685e-04 

6.00000000e-01 2.53388739e-03 2.47875218e-03 5.51352144e-05 

7.00000000e-01 9.35589191e-04 9.11881966e-04 2.37072250e-05 

8.00000000e-01 3.45448317e-04 3.35462628e-04 9.98568860e-06 

9.00000000e-01 1.27550148e-04 1.23409804e-04 4.14034355e-06 

1.00000000e+00 4.70954391e-05 4.53999298e-05 1.69550936e-06 

Tab 1: shows the numerical solution Vs Exact solution with the error of the method 

 

 
Fig 2: shows the graph of the numerical solution Vs Exact solution almost identical 

 

Here, the numerical curve overlaps the exact curve andthis shows excellent stiff decay, no oscillation and further 

confirms the L(α)-stability and accuracy of the method with very small truncation error. 

Problem 2: (Nonlinear non-stiff test problem) 
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X Numerical Exact Error 

0.00000000e+00 5.00000000e-01 5.00000000e-01 0.00000000e+00 

1.00000000e-01 6.57414591e-01 6.57414541e-01 5.00555478e-08 

2.00000000e-01 8.29298732e-01 8.29298621e-01 1.10639867e-07 

3.00000000e-01 1.01507078e+00 1.01507060e+00 1.83413936e-07 

4.00000000e-01 1.21408792e+00 1.21408765e+00 2.70271653e-07 

5.00000000e-01 1.42563974e+00 1.42563936e+00 3.73370446e-07 

6.00000000e-01 1.64894109e+00 1.64894060e+00 4.95165768e-07 
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7.00000000e-01 1.88312428e+00 1.88312365e+00 6.38449912e-07 

8.00000000e-01 2.12723034e+00 2.12722954e+00 8.06395707e-07 

9.00000000e-01 2.38019945e+00 2.38019844e+00 1.00260567e-06 

1.00000000e+00 2.64086032e+00 2.64085909e+00 1.23116731e-06 

Tab 2: shows the numerical solution Vs Exact solution with the error of the method 

 
Fig 3: the graph shows the numerical solution Vs Exact solution overlapping 

 

Here, the problem was solved using Newton iteration 

at each step because the method is implicit, the 

numerical solution matches the exact solution almost 

perfectly and this shows excellent stiff decay and 

further confirms the L(α)-stability and accuracy of 

the method with very small truncation error. 

 

VI. SUMMARY 

 

In this work, a new L(α)-stable one-step forth-order 

third-derivative parameter-dependent general linear 

method was developed for the numerical solution of 

stiff systems of ordinary differential equations. 

According to Butcher and Jackiewicz (2004). The 

method was constructed within the general linear 

methods framework, which provides a unifying 

structure for both Runge–Kutta and linear multistep 

methods and allows the systematic incorporation of 

higher derivatives of the solution. 

 

Starting from the general formulation of 

multiderivative general linear methods, a one-step 

scheme involving derivatives of the solution up to the 

third order was proposed. The free parameters 

introduced by the inclusion of higher derivatives 

were determined by enforcing the classical 

consistency and order conditions. By matching the 

Taylor expansion of the numerical solution with that 

of the exact solution, a fourth-order accurate scheme 

was obtained. This demonstrates that the use of 

higher derivatives makes it possible to achieve high-

order accuracy with a compact one-step formulation 

and without increasing the number of stages. 

 

A detailed stability analysis was carried out using the 

standard linear test equation. It was shown that an 

explicit polynomial stability function cannot satisfy 

the strong stability requirements needed for stiff 

problems. Consequently, an implicit formulation was 

adopted, leading to a rational stability function. The 

coefficients of the method were then chosen such that 

the resulting stability function satisfies the A-stability 

property and, in addition, fulfills the stronger L(α)-

stability condition, characterized by the vanishing of 

the stability function as the stiffness parameter tends 

to minus infinity. This property guarantees strong 

damping of highly stiff components and prevents the 

propagation of spurious oscillations in the numerical 

solution. 

The final method obtained in this work is therefore a 

one-step, fourth-order, implicit third-derivative 

general linear method with excellent stability 
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characteristics. It combines the advantages of one-

step schemes, such as ease of implementation and 

good starting procedures, with the strong stiff decay 

properties typically associated with backward 

differentiation formula methods. The analysis 

confirms that the proposed scheme offers a favorable 

balance between accuracy, stability, and efficiency 

for the numerical integration of stiff initial value 

problems. 

 

VII. CONCLUSION 

 

The construction of an L(α)-stable one-step third-

derivative parameter-dependent general linear 

method presented in this work demonstrates the 

effectiveness of combining the general linear 

methods framework with multiderivative techniques 

for the numerical treatment of stiff ordinary 

differential equations. By exploiting the additional 

degrees of freedom provided by higher derivatives, it 

has been possible to design a compact, high-order, 

and strongly stable numerical integrator. 

 

The proposed method achieves fourth-order accuracy 

while maintaining a one-step structure and satisfying 

the stringent L(α)-stability requirement. This ensures 

not only unconditional stability in the left half of the 

complex plane but also strong damping of stiff 

modes, making the method particularly suitable for 

problems with severe stiffness. In comparison with 

classical explicit Runge–Kutta methods, the new 

scheme offers significantly improved stability 

properties, and in contrast to multistep methods such 

as BDF, it avoids the need for multiple starting values 

while retaining comparable stiff decay behavior. 

 

The results obtained in this study indicate that 

multiderivative general linear methods constitute a 

powerful and flexible class of numerical integrators 

for stiff systems. Future work may focus on 

extending the present approach to multi-stage 

formulations, higher-order methods, variable step-

size implementations, and the efficient numerical 

approximation of the required higher derivatives. 

Furthermore, the performance of the proposed 

method can be investigated on a range of practical 

stiff problems arising in science and engineering in 

order to further assess its efficiency and robustness. 

REFERENCES 

 

[1] Sharifi, M., Abdi, A., Braś, M., and Hojjati, G. 

(2024). A class of explicit second derivative 

general linear methods for non-stiff ODEs. 

Mathematical Modelling and Analysis, 29(4), 

621–640. 

[2] Qin, X., Jiang, Z., and Yan, C. (2024). Strong 

Stability Preserving Two-Derivative Two-Step 

Runge–Kutta Methods. Mathematics, 12(16), 

2465. 

[3] Moradi, A. (2025). Filtered Implicit Second-

Derivative Time-Stepping Methods for Stiff 

Initial Value Problems. Communications on 

Applied Mathematics and Computation 1-20 

DOI:10.1007/s42967-025-00515-0 

[4] Izzo, G. and Jackiewicz, Z (2025). Self starting 

general linear methods with Runge–Kutta 

stability. Journal of Computational Dynamics 

Vol 12. Issue 1. Pp 1-22 

Doi:10.3934/jcd2024023 

[5] Butcher, J. C., and Jackiewicz, Z. (2004). 

Unconditionally stable general linear methods 

for ordinary differential equations. BIT 

Numerical Mathematics, 44(3). 

[6] Gautam, S., and Pandey, R. K. (2025). A new 

class of general linear method with inherent 

quadratic stability for solving stiff differential 

systems. arXiv:2512.05486. 

[7] Olumurewa, O. K. (2024). A study on 

convergence and region of absolute stability of 

implicit two-step multiderivative methods for 

stiff initial value problems. International 

Journal of Research and Innovation in Applied 

Science. Pp 134-147 DOI: 

10.51584/IJRIAS.2024.90315 

[8] Adoghe, L. O., Ukpebor, L. O., and Akhanolu, 

G. A. (2024). A new second derivative methods 

with hybrid predictors for stiff and non-stiff 

ODEs. FUDMA Journal of Sciences, 8(4), 193–

198 

[9] Sarshar, A., Roberts, S., and Sandu, A. (2021). 

Linearly Implicit General Linear Methods. A 

study on implicit/general linear methods 

extending Runge–Kutta and multistep ideas for 

stiff problems.  

 

 


