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Abstract - A one-step third-derivative parameter-
dependent general linear method is proposed for the
numerical solution of stiff ordinary differential
equations. The method is constructed within the general
linear methods framework and incorporates solution
derivatives up to the third order, providing additional
flexibility for accuracy and stability control. An implicit
formulation is adopted and the free parameters are
determined by enforcing consistency and fourth-order
accuracy conditions. Stability analysis based on the linear
test equation shows that the resulting rational stability
function satisfies the A-stability property and, in addition,
achieves L(a)-stability, as the stability function vanishes
for large negative values of the stiffness parameter. This
ensures strong damping of stiff components and
suppresses nonphysical oscillations. The proposed
scheme is a one-step, fourth-order, L(a)-stable method
that combines high accuracy with excellent stability
characteristics, making it suitable for stiff initial value
problems.

L INTRODUCTION

The numerical solution of initial value problems
(IVPs) for ordinary differential equations (ODEs)
plays a fundamental role in many areas of science and
engineering, including fluid dynamics, chemical
kinetics, electrical circuit simulation, control theory,
and biological modeling. In many of these
applications, the governing systems exhibit stiffness,
a phenomenon characterized by the presence of
widely separated time scales, which imposes severe
restrictions on the step size when explicit numerical
methods are employed. As a consequence, the
development of numerical integrators that are both
accurate and strongly stable remains a central topic in
numerical analysis. (See Moradi (2025)). Qin et al
(2024) opined that classical explicit Runge—Kutta
methods, although widely used because of their
simplicity and high order of accuracy, suffer from
limited stability regions and therefore become
inefficient or even unusable for stiff problems. On the
other hand, implicit linear multistep methods, in
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particular the backward differentiation formulas
(BDF), possess excellent stability properties and are
well suited for stiff systems. However, multistep
methods require several starting values, are less
flexible in variable step-size implementations, and
may suffer from order reduction or loss of stability in
certain situations. These limitations have motivated
the search for alternative numerical methods that
combine the advantages of one-step schemes with
strong stability properties see (Sarshar et al (2021)) .

According to Sharfi et al (2024). General linear
methods (GLMs), originally introduced by Butcher
and further developed by many authors, provide a
unifying framework that includes both Runge—Kutta
and linear multistep methods as special cases. Within
this framework, it is possible to construct one-step
methods with multiple internal stages and rich
stability and accuracy properties. In particular, the
use of Nordsieck-type representations allows the
method to propagate not only the numerical solution
but also scaled derivatives, leading to enhanced
flexibility and improved control over stability and
error propagation.

In recent years, there has been growing interest in
numerical methods that make explicit use of higher
derivatives of the solution. Such methods, often
referred to as higher-derivative or multiderivative
methods, have been shown to achieve high order of
accuracy with fewer stages and to offer additional
free parameters that can be exploited to optimize
stability properties. In the context of stiff problems,
these additional degrees of freedom are especially
valuable, as they allow the construction of methods
with enlarged stability regions and improved
damping of unwanted high-frequency components
(see Izzo and Jackiewicz (2025)).

Guatam and Pandey (2025) opined that among the
most important concepts in the numerical treatment

ICONIC RESEARCH AND ENGINEERING JOURNALS 243



© FEB 2026 | IRE Journals | Volume 9 Issue 8 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV918-1714029

of stiff differential equations is the notion of A-
stability and its stronger variant, L(a)-stability. A
numerical method is said to be A-stable if its region
of absolute stability contains the entire left half of the
complex plane, ensuring that the numerical solution
does not grow when applied to the linear test equation
with a negative real part. However, for very stiff
problems, A-stability alone is often insufficient, since
slowly decaying numerical modes may persist. The
stronger concept of L(o)-stability requires, in
addition, that the stability function tends to zero as
the stiffness parameter tends to minus infinity,
thereby guaranteeing strong damping of highly stiff
components and preventing spurious oscillations in
the numerical solution.

Motivated by these considerations, this work is
devoted to the construction and analysis of a one-step
third-derivative parameter-dependent general linear
method that satisfies the L(a)-stability property. By
incorporating derivatives of the solution up to the
third order, the proposed method introduces
additional free parameters that can be systematically
chosen to satisfy high-order consistency conditions
while simultaneously enforcing strong stability
requirements. An implicit formulation is adopted in
order to obtain a rational stability function whose
denominator dominates the numerator, a key
requirement for achieving L(o)-stability.

The main objective of this study is to derive a fourth-
order accurate one-step method within the GLM
framework that combines the advantages of high-
order accuracy, single-step implementation, and
excellent stiff stability properties. The stability
function of the proposed method is analyzed using
the standard linear test equation, and the necessary

conditions for A-stability and L(a)-stability are
established. The resulting scheme is shown to possess
strong damping characteristics, making it particularly
suitable for the efficient numerical integration of stiff
systems.

Let consider the IVPs
V()= fp(x), y(x)=y, (D

be the class of methods for integrating numerical
solution to initial value problems in stiff differential
equation. Where f(x,»(x)) and y(x)may be
vectors. Methods in this regard can be seen in the
works of [12] and these methods produce
approximate solution y,.. to y(X,,; ). Here, we
seek the numerical solution of this problem using a
third derivative parameter dependent general linear
method obtained by the modification of discrete
second derivative method in (1) with the assumption
that higher derivatives are available

y”:fx—i_fyf’
mo__ d n (2)
Y —dx(y )

The third
f,y" and y" exp licitly

derivative methods use

II.  THIRD DERIVATIVE PARAMETER
DEPENDENT GENERAL LINEAR METHOD
(TD-PD-GLM)

Let y[n] € R’ be the external stage vector and

Y € R’ the internal stages. A third-derivative

parameter dependent general linear method (TD-PD-
GLM) has the form

YU = Uy hd(en) () + B AB)Y (V) + I Ay (™)
Y=V hB(e) [ + e AB(B)Y (Y + B ()" (V™)

3)

Where f(Y'™), p"(Y"™), y" (Y™ are first, second and third derivatives, "' is the external vector and ¥!"

the internal stages and A4, A, A, B, B, B,U,V are coefficient matrices and &, f and ¥ are free parameters

controlling accuracy and stability?

Constructing a one-step third derivative parameter dependent general linear formula which is implicit in nature,
we extend (3) to

yn+1 = yn + han + ahzfn'H + ﬁh3fn"+1 + /’i’h4ﬁ::1 (4)

II1. ANALYSIS OF THE L(A)-STABILITY In this section, we analyze the L(a)-stability

properties of the methods in (4).
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Definition 3.1: According to Adoghe et al (2024). A
numerical method is said to be A-stable if
R(z) <1, R(z)<0.

Definition 3.2: According to Adoghe et al (2024). A
numerical method is said to be L(a)-Stable if it is A-
stable and satisfy L_{m R(z)=0

Definition 3.3: According to Adoghe et al (2024). A
method is said to be Parameter Dependent if it

contain free parameters &, £ and y and all lies
between 0 and 1for a smooth and better stability

accuracy..

Applying the methods in (4) to the Dahlquist test equation y/ =y, y" = /12y and y" = /13y

and let z=hA, Re(1) <0 then we obtain

Vo =V, +(@roz’ + 2+ )y,
So that
Von(—z—az’ = p* =z =y,
Then the stability function is

1

R —_—
@ l—z—az> = pz° = Az*

)

(6)

(7

Since the denominator is a polynomial of degree four, it follows immediately that

Lim R(z)=0 ®)
X—>—0
Provided y # 0 Therefore, the method is a candidate for L(a)-stability
4.0 Order Condition
The exact solution of the test equation of R(z) in (7) satisfies
z2 2z z
Rz) =0 =l+z+—+"—+"—+0(2") 9)
2 6 24
1 2 2z
Which implies =l4+z+—+"+—+0(2") (10)
l-z—az’ - pz° — Az* 6 24

To obtain a fourth-order accurate method, we require that the Taylor expansion of R(z) agrees with £ up to

terms of order z*. Inverting the denominator and expanding R(z) in a power series yields
R)=1+z+(1+a)z’ +(1+2a+ )z +(1+3a+2B+y)z" +... (11)
Comparing the coefficient (11) to that of (10), gives the system of equations below;

1+0¢=l

2
1+20:+ﬂ—l
6

1+3oz+2,8+;/:i

(12)

24
Solving for the values of &, f and y from the system of equation in (12) yields;
1 1 1
a=——, f=—and y=——
2 6 24

Substituting the values for &, f and y in (4), gives the general formula of the method below

1 1 1
— +h __hZ ! +_h3 " __h4
yn+1 yn fn+1 2 fn+1 6 fn+1 24

Therefore, the corresponding stability polynomial is
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|
R(z) = . . (14)
l—z+-z" -~z +—z
2 6 24
Since
LimR(z)=0 (15)
X—>—0
The method satisfies the L(a)-stability condition.
This method is very robust and powerful because it possesses the following
a. aone-step method,
b. a fourth-order method,
c. uses third derivative scheme and an implicit method.
d. an L-stable method properties with strongly stiffly damped.
e. Superiority over the RK4 and BDF2 in stiffness handling.
— Stability Boundary |R{z)] = 1 for Lia)-Stable TD-GLM
7.5 4
5.0 4
2.5 4 ‘;’\
g o /
—2.5 'i
—5.0
—7.5 4
—10.0 . . . . . .
—10 —& —6 —a —z a 2 4

Relz)

Fig 1: shows the stability curve of the L(a)-stable TD-PD-GLM

The region inside the curve is the stability region of
the method. The method possesses a very stiff modes
which are strongly damped and no spurious
oscillations for large negative z and this shows that
the method is L(a)-stable.

V. NUMERICAL EXPERIMENT

According to Olumurewa (2024).The new method
provides an efficient framework for solving stiff,

non-stiff, linear and non-linear and real life problems
in Ordinary Differential Equations (ODEs). By
incorporating second and third derivative
information and tunable parameters, the method
balance accuracy and stability. This paper
demonstrates the application of the method on two
problems i.e. stiff test and nonlinear non-stiff
problems: Both problems showcase the accuracy,
stability of the method.

The L(a)-stable one-step fourth-order TD-PD=GLM is given as

1 1 1
— +h __hZ i +—h3 " ——h4 m 16
yn+1 yn ]Fn+l 2 fn+1 6 fn+l 24 fn+1 ( )

Problem 1: (Stiff test problem)
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y'=-10y, y(0)=1
. —10x (17)
Exact solution y(x)=e ", h=0.1
X Numerical Exact Error
0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00

1.00000000e-01

3.69230769e-01

3.67879441e-01

1.351328006e-03

2.00000000e-01

1.36331361e-01

1.35335283e-01

9.96077710e-04

3.00000000e-01

5.03377333e-02

4.97870684e-02

5.50664905e-04

4.00000000e-01

1.85862400e-02

1.83156389¢-02

2.70601089e-04

5.00000000e-01

6.86261168e-03

6.73794700e-03

1.24664685e-04

6.00000000e-01

2.53388739e-03

2.47875218e-03

5.51352144e-05

7.00000000e-01

9.35589191e-04

9.11881966e-04

2.37072250e-05

8.00000000e-01

3.45448317e-04

3.35462628e-04

9.98568860e-06

9.00000000e-01

1.27550148e-04

1.23409804e-04

4.14034355e-06

1.00000000e+00

4.70954391e-05

4.53999298e-05

1.69550936e-06

Tab 1: shows the numerical solution Vs Exact solution with the error of the method

Problem 1: Mumerical vs Exact Solution
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Fig 2: shows the graph of the numerical solution Vs Exact solution almost identical

Here, the numerical curve overlaps the exact curve andthis shows excellent stiff decay, no oscillation and further
confirms the L(a)-stability and accuracy of the method with very small truncation error.
Problem 2: (Nonlinear non-stiff test problem)

Yy =y-x>+1, y(0)=0.5
o , 1 (18)

Exact solutionis y(x)=(x+1) —Ee , h=0.1
X Numerical Exact Error
0.00000000e+00 5.00000000e-01 5.00000000e-01 0.00000000e+00
1.00000000e-01 6.57414591e-01 6.57414541e-01 5.00555478e-08
2.00000000e-01 8.29298732e-01 8.29298621e-01 1.10639867e-07
3.00000000e-01 1.01507078e+00 1.01507060e+00 1.83413936e-07
4.00000000e-01 1.21408792e+00 1.21408765e+00 2.70271653e-07
5.00000000e-01 1.42563974e+00 1.42563936e+00 3.73370446e-07
6.00000000e-01 1.64894109e+00 1.64894060e+00 4.95165768e-07
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7.00000000e-01

1.88312428e+00

1.88312365e+00

6.38449912e-07

8.00000000e-01

2.12723034e+00

2.12722954e+00

8.06395707e-07

9.00000000e-01

2.38019945e+00

2.38019844e+00

1.00260567e-06

1.00000000e+00

2.64086032e+00

2.64085909e+00

1.23116731e-06

Tab 2: shows the numerical solution Vs Exact solution with the error of the method

Problem 2: Mumerical vs Exact Solution
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Fig 3: the graph shows the numerical solution Vs Exact solution overlapping

Here, the problem was solved using Newton iteration
at each step because the method is implicit, the
numerical solution matches the exact solution almost
perfectly and this shows excellent stiff decay and
further confirms the L(a)-stability and accuracy of
the method with very small truncation error.

VI. SUMMARY

In this work, a new L(a)-stable one-step forth-order
third-derivative parameter-dependent general linear
method was developed for the numerical solution of
stiff systems of ordinary differential equations.
According to Butcher and Jackiewicz (2004). The
method was constructed within the general linear
methods framework, which provides a unifying
structure for both Runge—Kutta and linear multistep
methods and allows the systematic incorporation of
higher derivatives of the solution.

Starting from the general formulation of
multiderivative general linear methods, a one-step
scheme involving derivatives of the solution up to the
third order was proposed. The free parameters
introduced by the inclusion of higher derivatives
were determined by enforcing the classical
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consistency and order conditions. By matching the
Taylor expansion of the numerical solution with that
of the exact solution, a fourth-order accurate scheme
was obtained. This demonstrates that the use of
higher derivatives makes it possible to achieve high-
order accuracy with a compact one-step formulation
and without increasing the number of stages.

A detailed stability analysis was carried out using the
standard linear test equation. It was shown that an
explicit polynomial stability function cannot satisfy
the strong stability requirements needed for stiff
problems. Consequently, an implicit formulation was
adopted, leading to a rational stability function. The
coefficients of the method were then chosen such that
the resulting stability function satisfies the A-stability
property and, in addition, fulfills the stronger L(a)-
stability condition, characterized by the vanishing of
the stability function as the stiffness parameter tends
to minus infinity. This property guarantees strong
damping of highly stiff components and prevents the
propagation of spurious oscillations in the numerical
solution.

The final method obtained in this work is therefore a
one-step, fourth-order, implicit third-derivative
general linear method with excellent stability
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characteristics. It combines the advantages of one-
step schemes, such as ease of implementation and
good starting procedures, with the strong stiff decay
properties typically associated with backward
differentiation formula methods. The analysis
confirms that the proposed scheme offers a favorable
balance between accuracy, stability, and efficiency
for the numerical integration of stiff initial value
problems.

VII. CONCLUSION

The construction of an L(a)-stable one-step third-

derivative  parameter-dependent general linear
method presented in this work demonstrates the
effectiveness of combining the general linear
methods framework with multiderivative techniques
for the numerical treatment of stiff ordinary
differential equations. By exploiting the additional
degrees of freedom provided by higher derivatives, it
has been possible to design a compact, high-order,

and strongly stable numerical integrator.

The proposed method achieves fourth-order accuracy
while maintaining a one-step structure and satisfying
the stringent L(a)-stability requirement. This ensures
not only unconditional stability in the left half of the
complex plane but also strong damping of stiff
modes, making the method particularly suitable for
problems with severe stiffness. In comparison with
classical explicit Runge—Kutta methods, the new
scheme offers significantly improved stability
properties, and in contrast to multistep methods such
as BDF, it avoids the need for multiple starting values
while retaining comparable stiff decay behavior.

The results obtained in this study indicate that
multiderivative general linear methods constitute a
powerful and flexible class of numerical integrators
for stiff systems. Future work may focus on
extending the present approach to multi-stage
formulations, higher-order methods, variable step-
size implementations, and the efficient numerical
approximation of the required higher derivatives.
Furthermore, the performance of the proposed
method can be investigated on a range of practical
stiff problems arising in science and engineering in
order to further assess its efficiency and robustness.
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