

Quality and Quality aspects in Foundry Industries

M. M. GANGANALLIMATH¹, K. VIZAYAKUMAR², UMESH M. BHUSHI³

¹*Mechanical Engineering Department, Basaveshwar Engineering College, Bagalkot*

²*Retired Professor, Indian Institute of Technology (I.I.T.), Kharagpur*

³*Professor Emeritus, Dept.of Business Studies, VTU, Belagavi*

Abstract - One of the most important manufacturing sectors is the foundry industry, which provides cast components to heavy engineering, automotive, aerospace, construction, power generation, and agricultural. Maintaining constant quality is still quite difficult because of the intricacy of casting procedures. Numerous aspects, such as raw material selection, process control, metallurgical processes, inspection techniques, and labor competency, affect quality in foundries. The concept of quality and several dimensions of quality in foundries are thoroughly examined in this work. Process quality, material quality, surface finish, dimensional correctness, metallurgical soundness, inspection systems, and quality management techniques are all covered. The article also discusses typical quality flaws, difficulties foundries encounter, relevant quality requirements, and contemporary technological solutions for quality enhancement. The study highlights the need of systematic quality management for foundry operations' long-term viability, customer satisfaction, and cost reduction.

Keywords – Casting Defects, Foundry Industry, Process Control, Quality Improvement

I. INTRODUCTION

By melting and pouring molten metal into molds to create metal castings, foundries are essential to the manufacturing supply chain. Because they can generate intricate shapes, are affordable, and are suitable for mass production, cast components are utilized extensively. However, a number of factors, including temperature, material composition, mold characteristics, cooling rates, and handling procedures, are involved in the foundry process and have a substantial impact on quality. In today's cutthroat production environment, quality has become crucial. Consumers want castings with minimal flaws, constant mechanical qualities, excellent surface quality, and high dimensional correctness. Increased scrap rates, rework expenses, and delivery delays result from any quality reduction.

Therefore, attaining operational excellence and worldwide competitiveness in foundries requires a grasp of quality and its many facets.

Driven by domestic demand, government initiatives like "Make in India," and a shift towards lighter, high-efficiency materials, India's foundry industry, which has over 4,500 units and is concentrated in clusters like Rajkot, Pune/Kolhapur, Chennai/Coimbatore, and Howrah, is the second largest in the world. The market for foundries is expanding significantly due to the growing emphasis on technological advancements, especially the incorporation of artificial intelligence (AI) into foundry design procedures. For manufacturers, this technological development allows for increased productivity, efficiency, and cost savings. Construction, electronics, aerospace, and industrial machinery are just a few of the industries this sector services. Furthermore, the market is being forced to adopt more sustainable practices as a result of rising environmental expenses brought on by environmental concerns. The landscape of the foundry business is being shaped by these trends, which are anticipated to have an ongoing impact on market expansion in the years to come. Important Features are;

- Major Clusters: Gujarat (Rajkot, Ahmedabad), Maharashtra (Pune, Kolhapur, Solapur), Tamil Nadu (Chennai, Coimbatore), West Bengal (Howrah), Punjab (Batala, Ludhiana), Haryana (Faridabad, Gurgaon), and Telangana (Hyderabad) are among the states where foundries are concentrated.
- Regional specializations include South India for auto/pump components, Kolkata for huge railway castings, Kolhapur for automotive/ export, and Rajkot for pumps/valves.

- Market Dominance: Sanitary, pipeline fittings, and railway components follow the automotive industry, which holds the biggest market of 32%.
- Strong domestic demand, government backing (Make in India), an emphasis on lightweight materials (for EVs), and infrastructural development are growth drivers.

II. CONCEPT OF QUALITY

2.1 Definition of Quality

"Fitness for use" or "conformance to requirements" are popular definitions of quality. The degree to which a casting satisfies predetermined standards for dimensions, mechanical characteristics, metallurgical soundness, surface finish, and performance during service is referred to as quality in the context of foundries. Every step of the foundry process, from design and material selection to melting, molding, pouring, cooling, and finishing, incorporates quality, not just the final inspection.

2.2 Importance of Quality in Foundries

The following factors make quality in foundries crucial:

- Increases customer satisfaction and trust
- Guarantees cast components' dependable performance and safety
- Enables adherence to national and international standards
- Enhances productivity and delivery performance
- Lowers scrap, rework, and production costs enhances competitiveness and market reputation

The foundry sector is going through a digital revolution as a result of the Internet of Things' (IoT) and artificial intelligence's (AI) integration, which makes casting designs more precise and customizable. Casting production is frequently outsourced by Original Equipment Manufacturers (OEMs) in an effort to cut expenses and boost productivity. Sustainable practices and energy efficiency are becoming crucial factors in foundry operations. Electrical and industrial machinery are being improved to use less energy, while pollution control technologies are being used to limit the impact on the environment. With a variety of casting techniques and metal alloys serving a broad spectrum

of industries, such as automotive, electronics, and aerospace, the foundry sector is diversified.

Foundries are using automation, robotics, and digitalization more frequently in an effort to boost output and raise product quality. Green foundries are becoming more popular as more sectors prioritize sustainability. Metal alloys are being developed to increase recycling rates and lower energy use. Green foundry practices, like as sustainable manufacturing methods and renewable energy sources, are also becoming more popular. Because of their high strength-to-weight ratio and use in a variety of industries, including electric vehicles, lightweight materials like aluminum are becoming more and more popular in the casting industry. To satisfy the needs of these developing markets, casting procedures and manufacturing methods are always changing.

Furthermore, the use of 3D printing in foundry applications is an emerging trend, offering the potential for greater customization and reduced production times. Ferrous and non-ferrous foundries continue to play a crucial role in the production of metal castings, with various casting processes and alloys catering to diverse industries. The adoption of automation, digitalization, and sustainable practices is transforming the industry, enabling greater efficiency, productivity, and customization.

The existence of MSMEs with low market capitalization presents difficulties for the Indian foundry industry. These organizations frequently lack the funds to make investments in pollution control technologies, which impedes their expansion. Increased investment in trash recycling technology and procedures is required as environmental rules become more stringent. Innovation in the foundry sector is being driven by sustainability, personalization, energy efficiency, and the use of lightweight materials like aluminum in electric vehicles. Casting designs and other manufacturing methods like 3D printing are also becoming more and more common. To maximize output and cut waste, OEMs and the Internet of Things (IoT) are progressively implementing artificial intelligence and sustainable practices. Robotics and automation are

important for increasing production efficiency and lowering faults.

Additionally, OEMs need precise casting and customisation, which calls for sophisticated casting designs and manufacturing processes. Gray iron casting, ductile iron casting, steel casting, malleable casting, and other pollution control methods help the electrical and industrial machinery industries meet environmental laws. Opportunities for direct and indirect employment The industry is a major contributor to the economy and is still expanding.

III. QUALITY ASPECTS IN FOUNDRIES

The demands of the automotive, industrial, and export industries are driving a major shift towards high-quality production in Indian foundries, which are the second-largest in the world by output volume (about 14–15 million MT annually). Reducing scrap rates, improving metallurgical qualities, and implementing international standards are important parts of quality in Indian foundries.

Another name for the casting process is the process of uncertainty. Casting flaws are discovered even in fully regulated processes, which makes it difficult to determine what causes them. Defects are frequently caused by multiple variables rather than just one. When these different elements come together, the underlying cause of a casting defects can become mysterious. Prior to determining the root cause of the issue, it is crucial to accurately identify the defect symptoms. In addition to failing to address the issue, false cures can complicate matters and make it more challenging to fix the flaw.

The final quality of castings is determined by a number of interconnected factors that can be used to assess quality in foundries.

3.1 Process Quality

The capacity of foundry operations to reliably produce castings that satisfy requirements is referred to as process quality. Process control is essential because casting is a multi-stage process. Pattern design and precision; molding sand qualities (strength, permeability, moisture); melting

temperature and furnace control; pouring time and metal flow are important components of process quality.

Control of cooling and solidification Defects including misruns, cold shuts, shrinkage cavities, and distortion are caused by inadequate process control.

3.2 Material Quality

A key factor that directly influences mechanical and metallurgical qualities is material quality. Key elements pertaining to the material:

- Purity of raw materials and charge mix
- Chemical makeup of metal alloys
- Alloying element control
- The caliber of binders, additives, and molding sand

Castings with an inaccurate chemical composition may be brittle, weak, or less resistant to wear.

3.3 Dimensional Quality

Dimensional accuracy guarantees that castings adhere to predetermined dimensions and tolerances. Factors that affect this include: Pattern wear and shrinkage allowance; mold alignment and rigidity; thermal expansion and contraction; and machining allowances. Inadequate dimensional quality leads to assembly issues, higher machining costs, and customer rejection.

3.4 Surface Quality

The smoothness and look of casting surfaces are referred to as surface quality. Surface quality is influenced by the following factors;

- Sand grain distribution and size
- Mold and core coating
- pouring temperature
- handling and cleaning techniques
- Stress concentration
- corrosion, and an unsightly appearance

3.5 Metallurgical Quality

Metallurgical quality guarantees that the casting's interior structure satisfies necessary requirements. Grain structure, phase distribution, mechanical characteristics including tensile strength, hardness,

ductility, and toughness, and the absence of internal flaws are important aspects of metallurgy. Heat treatment, inoculation, alloy composition, and cooling rate all affect metallurgical quality.

3.6 Inspection and Quality Testing

Testing and inspection confirm that quality standards are fulfilled. Typical techniques for inspection include;

- visual examination
- dimensional measurement.
- Non-destructive testing (NDT): magnetic particle inspection, ultrasonic testing, and radiography
- mechanical testing: Tensile, hardness, and impact tests
- Chemical analysis

Defective castings are kept out of the hands of consumers via efficient inspection.

IV. ROLE OF TECHNOLOGY IN QUALITY ENHANCEMENT OF FOUNDRIES

Modern foundries improve quality by utilizing cutting-edge technologies:

- [1] Computer-aided casting simulation
- [2] automated pouring and molding systems
- [3] real-time process monitoring
- [4] sophisticated inspection tools
- [5] digital quality records and
- [6] traceability systems

Instead of reactive inspection, technology allows for anticipatory quality control.

Quality control used to be the final stage before shipment in modern advanced foundries, but it now happens concurrently with production. Advanced foundries are using automated inspection tools like 3D scanning, ultrasound testing, and X-ray inspection to reduce the likelihood that manufactured goods may have surface and internal flaws as soon as they are produced.

Indian foundries are rebranding as manufacturers rather than just low-cost producers by using automation to decrease production unpredictability. Many Indian foundries are now positioned as precision partners with their clients as a result of their

capacity to attain such strong consistency, create documentation for every product created, and provide traceability for every product produced. Kolkata foundries can maintain India's advantages as a manufacturing site while competing on an equal footing with well-established international manufacturers with the right machinery and automated foundry systems.

In India, foundry yields are still impacted by casting flaws such as porosity, shrinkage, and inclusion. In the past, foundries would find these flaws after casting and either reject or fix the parts. The current strategy for the automation process is to eliminate the problem before it affects yield. Quality control used to be the final stage before shipment in modern advanced foundries, but it now happens concurrently with production. Advanced foundries are using automated inspection tools like 3D scanning, ultrasound testing, and X-ray inspection to reduce the likelihood that manufactured goods may have surface and internal flaws as soon as they are produced.

Even with highly skilled workers, manual methods can produce a wide range of differences. Robotic pouring, coating, and molding methods consistently yield the same outcomes. In high-volume, highly tolerant operations, these are crucial elements. When pouring temperatures and cooling profiles in the mold are monitored in real-time using system controls, any variances or unforeseen changes in those parameters can be promptly addressed. This type of control leads to a quantifiable increase in first pass acceptance rates, especially for complicated component parts based on regional projects spread over eastern India. Automated Inspection tools can detect problems that the human eye might have overlooked because of exhaustion or from extended work shifts by using Artificial Intelligence Vision Systems. As a result, producers can use this technology to save money on labor, materials, and energy.

Under Indian Production conditions, Indian manufacturers can produce dependable and consistent products by using Automated inspection. Manufacturers can now examine Production Patterns between Batches and Shifts by using Artificial Intelligence and Machine Learning, since the data

gathered creates a Predictive Model of Quality over time. Indian manufacturers are reinventing how they manage risk and dependability in their foundries by moving from an experience-based decision-making process to one based on data and evidence. In order to increase accuracy, productivity, and sustainability, modern foundries are quickly developing by implementing Industry 4.0 technologies, such as robotics, AI-driven simulation, and 3D printing (additive manufacturing). Digital twin technology, automated pouring, recycling green sand, and the creation of cutting-edge alloys for electric vehicles are some of the major themes.

Considering CASTnano as an example have applied nanotechnology for casting in order to solve sustainability issues and lower production costs and weight. They made-to-measure alloys to satisfy market demands which is the outcome of years of nanotechnology research. Also have created a unique high strength and ductility solution for the automobile sector, including chassis, transmission system, and safety parts,. This solution successfully competes with aluminum alloys in terms of cost.

V. BEST PRACTICES FOR QUALITY AND CONSISTENCY IN FOUNDRIES

The goal of best practices in foundries is to maximize safety, quality, and efficiency through strict adherence to PPE protocols to prevent moisture-related explosions, routine maintenance of core shooters and furnaces, and rigorous sand management (cooling, screening, and de-lumping). Implementing lean production, balancing melt loads to optimize energy use, enhancing ventilation, and guaranteeing constant, clean raw materials are all important tactics.

1. Use of consistent sand quality during the casting process

- o Inadequate sand can result in casting flaws, material waste, and higher production expenses. To prevent issues like distortion or incorrect mold formation, reclaimed sand needs to be sufficiently chilled, dried, screened, and de-lumped. In these procedures, vibratory conveyors are crucial because they provide uniform sand quality. Maintaining close control over sand

characteristics is a prerequisite for good casting results.

2. Optimize cooling to avoid casting deformation
 - o Warping, cracking, and other flaws that cause material waste and rework can be caused by improper cooling. The cooling process is properly managed using vibrating conveyors. For the castings to cool evenly and maintain their structural integrity, these conveyors need to be the right size and calibrated. Maintaining this control helps your foundry consistently produce high-quality castings while lowering scrap rates and downtime.
3. Make routine equipment maintenance a top priority for dependability
 - o The casting process can be adversely affected by worn-out springs, fasteners, or conveyors, which can raise failure rates and downtime. Providing high-durability parts that reduce the likelihood of breakdown, like Huck Bolts and new springs, which last two to three times longer. Equipment will continue to function effectively with regular wear and tear inspections and timely part replacements. This proactive strategy guarantees dependable performance throughout the production cycle and helps to prevent expensive disruptions.
4. Apply cutting-edge shakeout technology for successful sand removal
 - o Maintaining casting quality and production efficiency requires effective sand removal after casting. Vibration speed and retention duration can be precisely controlled using advanced shakeout technologies, such as our Delta-Phase® Shakeouts. This guarantees the best possible sand separation without endangering fragile castings. Proper sand removal also aids in reclaiming the sand for reuse, reducing costs and waste. Delta-Phase shakeouts enable you improve production, maintain the integrity of your castings, and achieve consistent results with configurable vibration angles and rates.
5. Modify vibration controls for consistency and precision
 - o Vibration controls must be fine-tuned in order to minimize faults and produce uniform castings. You can regulate how the material is handled during the casting process thanks to our

- shakeouts' exact adjustments. This adaptability guarantees constant de-lumping, cooling, and sand removal that are customized to the unique needs of each casting. Precision and repeatability across manufacturing batches are made possible by the capacity to modify the process in real-time, which avoids overstressing castings.
6. Effectively improve sand quality with attrition mills
 - o Sand lumps are broken up and contaminants like tramp metal are eliminated from the sand system by attrition mills. This procedure ensures that recycled sand can be reused without compromising casting quality by improving its consistency and grain size. Carrier's attrition mills offer an effective, low-maintenance way to lower expenses and improve sand quality with features like pneumatic discharge gates and replaceable wear liners.
- Maintaining consistency and quality in your casting foundry involves attention to detail at every step of the process. By concentrating on these best practices, casting defects can be significantly decreased and production can be increased. Check out our solutions for the casting foundry industry to learn more about how Carrier can enhance your foundry operations.
- ## VI. CONCLUSION
- A broad range of technical, managerial, and human elements are included in quality and quality aspects in foundries. Continuous improvement programs and systematic control over materials, processes, and inspection systems are necessary to achieve consistent quality. Foundries need to switch from traditional inspection-based quality control to integrated quality management systems in an increasingly competitive global market. Prioritizing quality across the whole manufacturing process guarantees enhanced output, client trust, and long-term expansion.
- ## REFERENCES
- [1] Samson, D., Terziovski, M. (1999) Relationship between TQM practices and operational performance, *J. Oper. Manag.*, 17 (4), pp. 393-409
 - [2] Prajogo, D. I., Sohal, A. S. (2004) The multidimensionality of TQM practices in determining quality and innovation performance: an empirical examination, *Technovation*, 24 (6), pp. 443-453
 - [3] Prajogo, D. I. (2005) The comparative analysis of TQM practices and quality performance between manufacturing and service firms, *Int. J. Serv. Ind. Manag.*, 16 (3), pp. 217-228
 - [4] Prajogoo, D. I., Sohal, A. S. (2006), The integration of TQM and technology/R&D management in determining quality and innovation performance, *Omega*, 34 (3), pp. 296-312
 - [5] Pinho, J. C. (2008) TQM and performance in small medium enterprises: the mediating effect of customer orientation and innovation, *Int. J. Qual. Reliab. Manag.*, 25 (3), pp. 256-275
 - [6] Suraj Dhondiram Patil, M M Ganganallimath, Roopa B Math, Yamanappa Karigar, (2015) "Application of Six Sigma Method to Reduce Defects in Green Sand-Casting February 2023 27 Process: A Case Study", International Journal on Recent Technologies in Mechanical and Electrical Engineering (IJRMEE) ISSN: 2349-7947 Volume: 2 Issue: 6
 - [7] Psomas, E. L., & Jaca, C. (2016) The impact of total quality management on service company performance: Evidence from Spain. *International Journal of Quality & Reliability Management*, 33(3), 380-398
 - [8] Stawowy, A., Duda, J., & Wrona, R. (2016) Applicability of business rules to production management in foundries. *Archives of Foundry Engineering*, 16(1), 85-88
 - [9] Marques, Pedro, Alexandre de Albuquerque & Matth, R. (2017) Six sigma DMAIC project to improve the performance of an aluminum die casting operation in Portugal. *International Journal of Quality & Reliability Management*, 34(2), 307-330
 - [10] M.Sundarrajan, T.Raja and M. Karthick, (2018) "Six Sigma Approach for Detection and Reducing Casting Defects", *International Journal of Mechanical Engineering and*

Technology (IJMET) Volume 9, Issue 5. 669–674

- [11] Dhruval Patel, Ankit Patel, Dhruv Patel, (2018) “Increasing the Quality in Sand Casting Using a Hybrid Approach”, International Journal of Trend in Research and Development, Volume 5(2), ISSN: 2394-9333.
- [12] M A Omprakas, M Muthukumar, S P Saran, D Ranjithkumar , C M Shantha Kumar , S Thiruppathi Venkatesh, M Sengottuvelan, (2021) “Analysis of Shrinkage Defect in Sand Casting by Using Six Sigma Method with Taguchi Technique”, IOP Conference Series: Materials Science and Engineering, 1059, 012047 10.1088/1757-899x/1059/1/012047.
- [13] Manoranjan R., Dr. Bhaskar S., Dr. Balaji, M. (2023), Review on analysis of foundry defects for quality improvement, Vol. XVI, Issue-2