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Abstract- RBM has been one of the most popular tools
applied recently regarding the asset management of
logistics, transport, or infrastructure systems that are
mostly driven simultaneously by demands of service
continuity, safety, and economic viability. Although recent
literature has produced somewhat advanced optimization
approaches, with some of those not yet applied successfully
because of gaps either in the description of service or
economic or downtime information, this literature review
discusses most of the peer-reviewed literature available
within the publication range of 2020-2025 thoroughly with
respect to optimization solution of RBM incorporating
concepts of RAMS, life cycle costs, and asset criticalities.
In this case, the prime areas of interest with emphasis on
risk information into service information, economic
information, or downtime information, along with man-
hour capacity or downtime information receive detailed
attention and emphasis. A detailed RAMS C? strategy is
also presented to scrutinize the operational readiness of
those studies, with supreme emphasis given to
implementability itself. It has been gathered in this review
that there might be certain limitations of those studies
concerning either the description of availability or
maintainability information, the usage of vague definitions
of criticalities, or a lack of validation tests with real-world
schedules. Consequently, based on those observations,
either  implementable  economic information or
implementable downtime information, risk information, or
a checklist reporting format has been presented below.
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L INTRODUCTION

Maintenance optimization is increasingly critical in
sectors where service continuity and safety depend on
physical assets, such as utilities, transportation,
infrastructure, process industries, and public services.
This trend is motivated by aging infrastructure, higher
service expectations, funding restrictions, and a
shortage of skilled labor.
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Reliability-based  maintenance  (RBM)  aligns
maintenance priorities with both the probability and
consequences of failure, thereby increasing visibility
in decision-making. However, RBM alone does not
guarantee the feasibility of work plans. Models that
neglect downtime schedules, workforce constraints,
access limitations, or supply chain delays may produce
conceptually perfect plans that are impractical in
practice. Furthermore, an exclusive focus on reliability
can veil vital concerns such as repair duration,
downtime costs, and safety risks.

The Reliability, Availability, Maintainability, and
Safety (RAMS) framework furnishes a standardized
approach for linking technical reliability to operational
performance. Availability is influenced by the
modeling of downtime. Maintainability reflects the
speed and agreement with which assets can be
restored. Safety encompasses the identification and
limitation of hazardous events. Recent revisions to
ISO 55000 and ISO 55001 (ISO,2024a,2024b)
reinforce these principles by establishing auditable
requirements for goal setting, risk awareness, and
continuous improvement. Under these standards,
optimization is integrated into an expanded
governance framework rather than being treated solely
as a technical activity.

This review addresses a clear gap in the literature: the
absence of a synthesis that evaluates RBM
optimization methods from the perspective of
operational capability, including applied challenges,
transparency in criticality assessment, and realistic
validation, rather than focusing exclusively on
algorithmic sophistication.

1.1 Aim, objectives, and research questions

Aim: To synthesize peer-reviewed research (2020—
2025) on RBM optimization that integrates RAMS,
cost, and criticality, and to propose metrics and
reporting guidelines that facilitate deployable
solutions.

Objectives:
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e Identify how studies model RAMS
consequences.

e Examine how lifecycle cost, authenticity, and
budget limits are represented.

e  Characterize criticality modeling strategies.

e C(Classify optimization and scheduling
techniques.

e Develop a deployment ready reporting and
evaluation checklist.

Research questions:
1. How is risk translated into RAMS outcomes?
How are cost and actual conditions encoded?

How is criticality defined and validated?

Eal

Which modeling strategies show the
strongest potential for operational transfer?

Unique contribution: The introduction of the RAMS
C? analytic system, a structured reporting checklist,
and a set of standardized operational metrics that
enable cross-study comparison across  both
implementability and algorithmic innovation.

IL. CONCEPTUAL BACKGROUND

Risk-Based Maintenance (RBM) is a decision process
that involves gathering evidence, assessing risks and
possible outcomes, choosing actions within real-world
limits, carrying out plans, and learning from the
results. The RAMS framework Reliability,
Availability, Maintainability, and Safety connects the
dependability of each part to overall service,
repairability, and safety risks. Criticality shows how
much a failure would disrupt the mission, and this can
change as backup systems are added or removed.

RBM shares methods with Risk-Based Inspection
(RBI) and Condition-Based Maintenance (CBM).
Adaptive RBI planning shows inspection timing can
be optimized by reducing risk and uncertainty (Yang
& Frangopol, 2021). CBM scheduling frameworks for
fleets highlight the need to turn prognostic evidence
into feasible schedules that consider -capacity
constraints (Tseremoglou et al., 2024). Surrogate-
assisted methods enable exploration when direct
evaluations are computationally intensive (Greiner &
Cacereflo, 2024).

IRE 1714089

II1.  METHODS

The review followed PRISMA 2020 (Page et al.,
2021) and PRISMA-S (Rethlefsen et al., 2021)
guidelines, consistent with evidence synthesis
recommendations (Aromataris & Munn, 2020).
Eligibility criteria  included  peer-reviewed
maintenance decision studies from 2020 to 2025 that
explicitly addressed risk or consequence and
incorporated at least two dimensions among RAMS,
cost or lifecycle cost (LCC), criticality, and
operational constraints. By aligning each eligibility
dimension with a governance question, like "Who
signs off on downtime risk?' or 'Who is accountable
for cost management?', the selection logic becomes
more tangible and relatable, emphasizing decision
ownership. The literature search encompassed Scopus,
Web of Science, IEEE Xplore, and Engineering
Village, using terms related to RBM, RBI, Reliability-
Centered Maintenance (RCM), CBM, optimization,
scheduling, portfolio, RAMS, cost, and criticality.
Records were de-duplicated, screened, and extracted
for information on domain, decision variables,
objectives, constraints, uncertainty, data utilization,
and validation.

Records identified
(n = 1824)

I

Records after duplicates removed
(n =1412)

I

Records screened (title/abstract)
(n = 1412)

Records pxcluded
(n = |189)

Full-text articles assesse
(n =22

Full-text artidles excluded
{n =|520)

Studies included in qualitative synthesis
(n = -297)

Table 1. Eligibility criteria (summary)
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Include Exclude

2020-2025 Outside 2020-2025;
peer-reviewed non-peer-reviewed
RBM/RBI/CBM

maintenance decision

studies

Optimization  output | Detection-only outputs
with explicit
risk/consequence

>2 dimensions among | Single-metric reliability
RAMS, cost/LCC, | optimization
criticality, operational
constraints

A qualitative synthesis was conducted, applying
RAMS-C3 readiness criteria: RAMS mapping, cost
realism, criticality transparency, and constraint
realism. Unlike traditional RAMS frameworks,
RAMS-C3 places a stronger emphasis on real-world
implementation by explicitly incorporating the
dynamic interplay between these elements. It goes
beyond by challenging conventional reliability models
to integrate constraints and operational variables,
thereby providing a more transparent and practical
approach to understanding and managing critical
systems. This enhanced clarity not only strengthens
decision-making but also aligns it with the evolving
demand for accountable and adaptable maintenance
strategies.

Figure 1. The included studies span infrastructure
networks, fleets,  process  industries, and
manufacturing sectors. Publication volume increased
from 2020 to 2025, reflecting a growing emphasis on
integrating optimization with digital decision support.
Decision types are categorized as policy optimization,
constrained scheduling, and portfolio selection. The
RAMS-C3 framework (Figure 2) was applied to assess
operational readiness.
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Figure 2. RAMS-C3 synthesis framework used in this
review.

Trend of included studies on risk-based maintenance optimization (2020-2025)
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Figure 3. Trend of included studies (illustrative
counts) across 2020-2025.
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Figure 4. Illustrative cost—risk Pareto tradeoff
(synthetic example).

4.4 Risk formulation patterns

Risk is usually defined as expected loss, which is the
chance something goes wrong multiplied by the cost
or impact. Consequences can include repair costs, lost
service, or serious safety threats. The most useful
studies turn technical details into real-world service
impacts and clearly explain the effects of their
assumptions, making it easier for organizations to
manage and review their decisions. A simple guideline
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to steer researchers could be: 'Model dollars when
outages cost money; model hours when customers feel
downtime.! This approach underscores the
significance of tailoring consequence modeling to
specific impacts, thereby aligning recommendations
with practical realities.

4.5 Uncertainty modeling and robustness

Uncertainty manifests in several forms: condition
uncertainty, failure-process uncertainty, consequence
uncertainty, and operational uncertainty related to
resources and logistics. Adaptive inspection planning
addresses belief updates (Yang & Frangopol, 2021).
While learning-based policies offer adaptability, they
necessitate  drift-aware  validation and  the
incorporation of safety constraints (Zhang et al.,
2020).

4.6 Validation and evaluation designs

Evaluation methods include wusing synthetic
simulations, parameterized simulations, testing over
time, and small pilot studies. At a minimum, good
practice means using time-based validation, stress
tests with different scenarios, and clear data splitting,
following PRISMA-style transparency (Page et al.,
2021).

4.7 Taxonomy of optimization formulations

Optimization formulations include policy
optimization (MDP/POMDP), constrained scheduling
(MILP or metaheuristics), portfolio selection (multi-
objective evolutionary algorithms), and hybrid
approaches. Dynamic scheduling shows how capacity
limits affect decisions in fleet CBM contexts
(Tseremoglou et al., 2024).

Table 2. Method families and operational readiness
observations (2020-2025)

Method family  Decision Strengths Gaps
variable

MDP/POMDP  Policy Uncertaint Scalability;
threshol y-aware  maintainabili
ds policies  ty simplified
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MILP/metaheurist Schedul Constraint Often
ics es faithful;  deterministic
executable inputs

MOEAs Portfolio Tradeoff Selection
s visibility rules
underreporte
d
Data-driven/RL  Adaptiv Learns Drift/leakage
e from data underreporte
policies d

V. RAMS-C3 SYNTHESIS: INTEGRATED
FINDINGS

5.1 RAMS integration

Reliability models are often robust, but availability
and maintainability tend to get shortchanged. Effective
planning requires a close look at how downtime is
spread out, and a clear split between scheduled and
surprise outages. If safety is treated as just another
penalty, real risks can slip through unnoticed;
governance-minded models treat safety as a hard
boundary, making any leftover risk visible. Reviews
of critical infrastructure reveal that RAMS reporting is
still inconsistent across the field. Cost estimCost
estimates are more reliable when lifecycle cost (LCC)
is broken down into real components like preventive
and corrective work, inspections, spare parts, logistics,
and downtime penalties. When subsystems depend on
each other, the balance between cost and keeping
things running can change a lot. Surrogate-assisted
optimization allows planners to test more scenarios in
digital twin environments without slowing down the
process.icality  transparency and  auditability
Criticality needs to be clear and easy to audit. Industry
4.0 RBM suggests updating criticality as new evidence
and operating conditions change, while keeping
records for traceability (El-Thalji et al.,, 2025).
Adaptive inspection approaches say criticality should
be tied to how good the evidence is and how much
uncertainty is reduced (Yang & Frangopol, 2021). As
a self-checkpoint, consider asking, 'If an auditor
reviewed this plan next year, could they trace each tier
change back to evidence? Embedding this question
reinforces the transparency ethos.

ICONIC RESEARCH AND ENGINEERING JOURNALS 47



© FEB 2026 | IRE Journals | Volume 9 Issue 8 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV918-1714089

5.4 Constraints, schedules, and execution

Constraints are the gatekeepers of any optimization
plan—they determine what is actually possible. In
transport and utilities, outages must fit into narrow
time slots. Fleet maintenance hinges on hangar space
and spare parts. For civil infrastructure, strict access
rules and safety permits dictate when crews can get to
work. Scheduling that takes constraints into account is
a key part of RBM. Mixed-integer models can make
sure crew hours, task order, and blackout periods are
followed. Metaheuristic methods are flexible for
complex problems but need to check if solutions are
actually possible. Fleet maintenance planning shows
that even accurate CBM predictions do not ensure
execution if schedules are not feasible; capacity
constraints can force deferral and alter risk posture
(Tseremoglou et al., 2024). In rail track maintenance,
decision support models integrate reliability and
availability with cost and realistic planning cycles
(Kasraei et al., 2022). Rolling stock policy research
highlights that maintenance proStrong governance
starts with a schedule that can actually be delivered.
Every task is assigned a date, a responsible person, and
a planned outage window. Any leftover risk is tracked
by tying it directly to delayed tasks, making
accountability clear. task gets a date, an owner, and a
planned outage. Any remaining risk can be tracked by
linking it to tasks that are delayed

Table 3. Deployment-oriented metrics mapped to

RAMS-C3
Metric Dimension Example Why it
computation matters
Risk Cost + risk (RiskO—Risk1)/LC Value-
reduced C for-
per dollar money

Avoided Availability Downtime0—Down SLA

unavailabi timel linkage
lity

MTTR  Maintainabi Mean + p90 Tail risk
distributio lity

n
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Residual Criticality Risk(T1/T2/T3)  Auditabil

risk by tier ity
Workload Constraints StdDev weekly Executio
stability hours n success

VI. DEPLOYMENT-ORIENTED SYNTHESIS
AND DESIGN GUIDANCE

6.1 From model to maintenance program

Bringing RBM to life takes more than just an
optimization engine—it needs a clear decision process
and the right supporting materials. This section gathers
hands-on design guidance drawn from research and
real-world experience.

6.2 Data requirements and minimum viable RBM

A simple RBM program can begin with just the
essentials: a list of assets, logs of failures and
downtime, cost data, and a straightforward method for
ranking criticality. As better data rolls in, the program
can grow to include condition-based maintenance and
digital twin capabilities.

6.4 Normalization and comparability

Comparing assets calls for careful data normalization.
Governance-friendly approaches steer clear of putting
a dollar value on safety; instead, they set safety tiers as
boundaries and focus optimization on cost and
availability within those limits.

6.5 Deployment gets smoother with proven patterns:
two-stage processes, tier-aware constraints, objectives
that factor in downtime, scenario libraries for testing,
transparent risk reporting, and solid change control
routines.

6.6 RAMS modeling deep dive

A frequent problem when comparing studies is that
RAMS is sometimes treated as just reliability. For
real-world use, a basic RAMS model should make
clear:

(i) Reliability: failure model structure (constant
hazard, Weibull, competing risks, state-dependent
hazard) and how condition affects the hazard.
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(i) Awvailability: how downtime is calculated.
Availability depends on both failure frequency and
restoration duration. Restoration duration includes
detection, diagnosis, travel, access, repair, testing, and
return-to-service. Many models use a single MTTR
parameter, but deployments benefit from decomposed
downtime, which identifies improvement levers such
as spares, procedures, and staffing.

(iii) Maintainability: variability and tail risk. Two
interventions may have similar mean MTTR but
different 90th percentile MTTR; the higher value
increases outage planning risk. Including a distribution
supports realistic scheduling buffers.

(iv) Safety: scenario representation. For safety-critical
assets, safety should be represented through hazard
scenarios and tolerability. Instead of monetizing
safety, many organizations treat safety risk as a
constraint and require explicit residual risk reporting.

Mapping RAMS to optimization. In practice, RAMS
variables appear in optimization in several ways:
- Reliability influences expected failures and,
therefore, workload.
- Availability is represented by downtime cost or a

corrective

direct objective (minimize unavailability).
- Maintainability appears via repair-time distributions

and resource consumption.
- Safety appears via constraints, penalties, or tier-
specific thresholds.

RAMS modeling and constraints go hand in hand:
lengthy repairs tie up crews and can delay preventive
tasks, shifting what gets top priority. Good RBM
optimization should reveal not just the failures it
prevents, but also the expected workload and
downtime  that come  with each  plan.
When assessing RAMS models, align them with how
and when decisions are made. If planning happens
weekly, downtime and crew schedules should be
modeled week by week. For annual decisions,
summaries might suffice, but outage limits still need
attention. Report RAMS results in down-to-earth
terms: hours of downtime, percent unavailability,
MTTR distributions, and safety risk by tier. This
practical approach makes adoption easier and
addresses the reporting gaps highlighted in systematic
reviews.
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6.7 Lifecycle cost deep dive

6.9 Lifecycle cost modeling deep dive. Cost is often
the bridge between engineering metrics and
governance, but it can be misleading if incomplete.
Direct maintenance cost includes labor, materials,
contractors, and equipment. Indirect costs include
outage penalties, lost production, customer
compensation, and reputational impacts. Some sectors
quantify indirect cost as a penalty per hour of
downtime; others use customer-minutes interrupted or
energy-not-served. For safety, direct monetization
may be ethically or regulatorily inappropriate, so
safety is commonly treated separately.

Lifecycle cost (LCC) in RBM planning typically
includes:

- Preventive maintenance cost (planned tasks)
- Corrective maintenance cost (unplanned failures)
- Inspection/monitoring cost

- Spare parts and logistics cost, including lead-time
buffers

- Downtime and service disruption cost

- End-of-life replacement or refurbishment cost

Realistic cost estimates must fit the rhythm of budget
cycles: annual budgets are locked in, and mid-year
changes require special approval. Portfolio models
that skip this step risk proposing spending plans that
simply cannot be put into action. Another challenge is
the tug-of-war between cost and constraints. A plan
that slashes expenses may backfire if it overloads
teams in a short window. To counter this, some studies
aim to spread out the workload or cap weekly labor,
keeping deployment steady and sustainable.

Dependencies change costs. When subsystems depend
on each other, the best mix of preventive and
corrective actions changes, and the balance between
cost and availability shifts (Mellal & Zio, 2022). This
means LCC estimates shouldn't assume parts fail
independently if they share environments, causes, or
resources. Timing matters, too: if cost calculations
require  heavy  simulations, surrogate-assisted
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optimization offers a shortcut, letting planners explore
more options without bogging down the planning
process.

6.8 Criticality taxonomy deep dive

6.10 Criticality taxonomy and implementation
guidance. Criticality is often described as 'importance’,
but should be operationalized as mission impact under
failure.

Tier-based criticality is recommended for deployment
because tiers map to governance: different review
levels, tolerability thresholds, and reporting
expectations. A practical criticality taxonomy can
include:

- Safety-critical tier: failure can lead to harm. Requires
strict tolerability constraints and explicit residual risk
reporting.

- Service-critical tier: failure causes major service
disruption or  significant customer impact.
- Cost-critical tier: failure causes high repair cost or
production loss but limited safety risk.
- Low-criticality is not set in stone. Shifts in
redundancy, asset usage, or external conditions can
bump an asset up or down the tiers. Industry 4.0 RBM
recommends updating criticality as fresh evidence
arrives, with every change logged and explained for
audit trails 2025). Any changes in tier should be
logged with reasons to support audits.

Criticality is used in optimization in several ways: as
weights, limits, service requirements, or rules for
setting priorities in schedules. Using tier-specific
limits works well for governance because it allows
clear statements like 'Tier 1 residual risk is below the
set threshold.'
For deployment, criticality should be tied to the
strength of the evidence. Adaptive inspections reduce
uncertainty, shifting both risk and how critical an asset
appears in decision-making. That means criticality
reviews should go hand in hand with inspection and
monitoring results.
When reporting, studies should explain how they
define criticality and show how they assign assets to
tiers, even if the method is simple. This is needed so
others can use the results.

IRE 1714089

6.9 Cross-domain case synthesis

Across every field, constraints set the boundaries of
what can be achieved, while maintainability is a
hidden strength that is often missed. Criticality tiers
make governance smoother. Sectors differ in how they
value consequences, the data they collect, and how
frequently they make decisions. To enhance cross-
domain applicability, consider including a qualifying
phrase, such as 'in contexts where outage windows are
pre-approved', which helps readers assess the
transferability of the guidance to their own
environments.

VII. REPORTING CHECKLIST AND RAMS-C3
SCORING RUBRIC

Transparent reporting paves the way for others to use
and build on your findings. A simple checklist and an
optional readiness score—rooted in PRISMA
transparency and ISO asset governance—can make
adoption much smoother.

7.3 Example operational To bridge RBM research and
real-world practice, it helps to show how model results
plug into maintenance management systems. Each
asset gets a unique ID and is mapped to its location,
function, redundancy group, and owner. undancy
group, and ownership.

Step 2: Define criticality tiers and tolerability
thresholds. This includes specifying what constitutes
unacceptable risk for Tier 1 assets (e.g., safety risk
threshold), and service-level expectations for Tier 2
assets (e.g., maximum expected downtime per
quarter).

Step 3: Assemble evidence and calibrate models.
Evidence may include condition indicators, inspection
results, failure history, and downtime/MTTR records.
The risk model estimates failure probability over the
planning horizon and links failures to consequences
(downtime, penalties, hazards).
Step 4: Select the optimization output type. For annual
planning, a portfolio output is wuseful: which
interventions to fund and execute. For monthly or
weekly planning, constrained scheduling is needed:
exact timing within outage windows.

Step 5: Run optimization with feasibility checks. The
optimizer produces candidate plans; each plan is
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checked for crew hours, outage window compliance,
and spare availability. Feasibility checks are as
important as objective value.

Step 6: Produce governance artifacts. For each plan,
produce:

(i) residual risk by tier;
(i1) expected downtime by period;
(iii) spend profile by month;

(iv) top deferred risks and associated monitoring
triggers.

Step 7: Publish to execution systems. The chosen
schedule is exported as work orders, each with
assigned crews, planned outages, parts list, and
acceptance criteria. A link from each work order to its
risk rationale supports auditability.

Step 8: Monitor and update. During execution, actual
downtime and costs are recorded. Deviations (long
repairs, unexpected failures) trigger model updates
and re-planning.
RBM studies should showcase outputs like a ranked
intervention list with criticality tiers and expected risk
cuts, an outage calendar, a chart of remaining risk by
tier, and a workload histogram. These examples line
up with the reporting checklist and make real-world
adoption easier.

Category Minimum items Artifacts
Scope Asset boundary; Hierarchy;
horizon; cadence outage
calendar
RAMS Downtime MTTR  p90;
distribution; hazard
maintainability; safety scenarios
thresholds
Cost LCC + budgets Budget
profile;
penalty model
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Criticality Tier definitions +Tier matrix;
mapping logic redundancy
map

Constraints ~ Crews, spares, access, Roster; lead
windows times

Validation Temporal split; stress Backtest;

tests scenarios

Governance Residual risk +Risk register;
deferrals audit trail

VIII. DISCUSSION

The most practical studies are those that stay grounded
in real-world constraints, spell out criticality clearly,
and rely on time-based validation. While learning-
based methods and digital twins show promise, safety-
critical assets demand strong governance and vigilant
monitoring for any changes. Threats Common pitfalls
include overfitting in simulations, data leaks, missed
constraint violations, fuzzy criticality, and apples-to-
oranges metrics. To guard against these, use scenario
stress tests, time-based backtesting, feasibility checks,
clear tier definitions, and practical, comparable
metrics.

IX. FUTURE RESEARCH AGENDA

Top priorities include building benchmarks that track
changes over time, creating unified definitions for
criticality, optimizing reliability and maintainability
side by side, setting standard operational metrics,
developing governance-first tools, and reporting
surrogate errors transparently.

X. CONCLUSION

RBM optimization research is moving forward, but
real-world readiness hinges on solid modeling of
downtime and maintainability, realistic constraints,
and transparent criticality tracking. The RAMS-C3
framework brings these elements together and
provides a checklist to help teams compare and
prepare for deployment.
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11. This section dives deeper into the key themes that
shape practical RBM optimization for RAMS, cost,
and criticality. The aim is to turn the latest research
(2020-2025) into actionable design choices,
spotlighting where the evidence is solid and where
assumptions are most common. While earlier sections
covered the methods, here we explore how those
methods are actually applied, which modeling
decisions make the biggest difference, and which
reporting details determine if others can use and
replicate the work. we can use and repeat the work.

11.1 Theme A: “Risk” is not a single number—
consequence modeling shapes decisions more than
likelihood modeling.

Across the included literature, likelihood is often
modeled with familiar reliability or degradation
models: Weibull hazard, Markov transitions,
competing risks, or state-dependent hazard driven by
condition indicators. In many cases, different
likelihood models produce similar relative rankings,
especially when data are sparse, and uncertainty
dominates. By contrast, consequence modeling
frequently changes recommendations. If consequence
is modeled purely as direct repair cost, preventive
work tends to cluster around high-failure-frequency
assets. If consequence includes service unavailability,
preventive work shifts toward assets with long
restoration times and high customer exposure. If safety
is modeled as a constraint, the feasible plan region
changes: certain deferrals become unacceptable
regardless of cost efficiency.

The takeaway: RBM optimization should focus early
modeling efforts on how consequences are structured.
A simple hazard model paired with a detailed
downtime and service disruption model can beat a
fancy hazard model that overlooks downtime. This fits
with RAMS thinking—availability depends on both
how often things fail and how long they stay down. In
practice, decision makers care more about the outages
or harm they can avoid than about the technical hazard
rate. That’s why this review treats realistic
consequence modeling as a top priority for readiness.

11.2 Theme B: Availability and maintenance. Most
studies highlight gains in reliability, but few spell out
improvements in availability—and when they do, the
definitions jump around: instantaneous, operational, or
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service availability. Maintainability is even more
inconsistently defined. Yet in the real world,
maintenance plans are judged by how long outages
last, how confident teams are in restoring service, and
how predictable the workload can be and workload A
RAMS model built for deployment should always split
planned from unplanned downtime, since each is
managed in its own way. Planned downtime can be
scheduled with customer alerts and backup plans,
while unplanned downtime is what really hurts a
company’s reputation. Maintainability should be
broken down into actionable steps: detection, access,
diagnosis, repair, testing, and getting back online. This
breakdown lets teams see where investments will cut
the worst-case downtime. Systematic reviews show
that RAMS definitions and metrics are all over the
map, making it hard to compare RBM optimizations.
A simple fix—reporting both the average and the 90th
percentile MTTR—can make results much clearer.
interpretable.

11.3 Theme C: Criticality is a governance construct;
tiered models are easier to adopt than weighted scores.

Many studies treat criticality as just a number that
multiplies risk or downtime, which is easy for math
but confusing in practice—a weight of 5 or 10 rarely
means much to anyone. Different teams see criticality
through their own lens: safety cares about hazards,
operations about service, and finance about money.
Industry 4.0 RBM says criticality should be updated as
new evidence and conditions emerge, but if these
changes aren’t tracked, it can lead to confusion and
shaky governance.

Tiered criticality offers a hands-on fix. Tiers set clear
governance lines: Tier 1 assets need strict risk controls
and top-level review, Tier 2 assets get service-level
protection, and Tier 3 assets are open to opportunistic
maintenance. Tiers can shift as redundancy or
operations change, as long as every move is logged
and reviewed. In optimization, tier-specific constraints
produce results that stand up in audits: for example,
'Tier 1 safety risk stays below the threshold, Tier 2
downtime drops by X% within budget.' This approach
matches ISO asset management’s call for risk-based,
objective-aligned planning.D: Constrained scheduling
is where “optimization” meets reality.
Even when studies develop elegant risk and cost
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models, execution often fails because resource
constraints are not encoded. Constrained scheduling
includes: outage windows, crew availability, skill
constraints, precedence constraints, access permits,
and spare parts lead times. In fleet contexts, hangar
capacity and aircraft availability drive scheduling
feasibility; in rail contexts, track possession windows
and safety permits dominate. A dynamic scheduling
framework for aircraft fleet CBM demonstrates how
capacity constraints can force deferral and change the
risk profile, even if the underlying -condition
prediction is accurate (Tseremoglou et al., 2024). A
railway track geometry decision support model
illustrates  integration of cost, reliability, and
availability into planning (Kasraei et al., 2022).
Rolling stock policy development work further
emphasizes that maintenance processes evolve and
thus policies must accommodate change (Kumari et
al., 2025).

When it comes to real-world adoption, realistic
constraints matter more than which solver you pick.
Mixed-integer programming is great for capturing
every rule, but metaheuristics work just as well if they
check feasibility and test sensitivity. For deployment,
what counts most are three things: a schedule you can
actually execute, a feasibility report covering crew
hours and window compliance, and a clear picture of
the residual risk after scheduling.

11.5 Theme E: Multi-objective optimization is most
valuable when paired with a decision selection rule.

Many RBM problems are multi-objective: minimize
risk, minimize cost, minimize downtime, and smooth
workload. Multi-objective evolutionary algorithms are
widely used because they produce Pareto sets. Yet, in
practice, a Pareto set is not a decision. Governance
requires a selection rule: a method for choosing one
plan from the set based on thresholds, stakeholder
preferences, or regulatory constraints. Surrogate-
assisted multiobjective approaches enable efficient
exploration when evaluations are expensive and are
increasingly wused in digital-twin-like scenarios
practical way to choose among options is to use a
tiered rule: set hard safety limits for Tier 1 assets,
minimum availability for Tier 2, and then pick the plan
with the lowest lifecycle cost that fits. Or, use a value-
for-money rule—select the plan that delivers the most
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risk reduction per dollar, as long as the workload stays
manageable. Without a clear selection rule, studies
risk being seen as academic rather than truly useful for
decision makers. her than operational decision tools.

11.6 Theme F: Dependency modeling shifts priorities
and changes cost—availability tradeoffs. Assets rarely
fail independently. Shared environments, common-
cause failures, and functional dependencies cause
correlated failures. Dependency also exists in
maintenance execution: a single outage may enable
multiple interventions, or a delayed spare may delay
multiple tasks. A multi-objective availability and cost
optimization  study  with  subsystem failure
dependencies demonstrates that dependencies change
optimal solutions and the shape of the cost-availability
frontier (Mellal & Zio, 2022).

For deployment, start simple with dependency
modeling: group assets by redundancy or shared
services. Even a rough map of dependencies can boost
plan quality by avoiding underestimated consequences
and spotting chances for joint work. To prevent
misinterpretations during later reviews, authors should
explicitly state in the abstract whether failures are
assumed to be "independent" or "dependent." This
small step can provide clarity and preemptively
address potential misunderstandings.

11.7 Theme G: Evidence quality and inspection
planning are part of the optimization problem.
RBM is not only about maintenance actions; it is also
about evidence acquisition. Inspection and monitoring
decisions change uncertainty, and thus change optimal
maintenance timing. Risk-based inspection planning
provides a clear example: inspection timing can be
optimized to reduce uncertainty and risk over the life
of a deteriorating structure (Yang & Frangopol, 2021).
The RBM literature can incorporate similar logic by
treating inspection and monitoring as decisions with
costs and expected value of information.

For deployment, organizations should see evidence
programs—inspections, sensors, data pipelines—as
investments to be prioritized with the same RAMS-C3
logic. If uncertainty is what drives overly cautious
maintenance, then better evidence can cut both risk
and cost.
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11.8 Theme H: Learning-based methods require
additional governance—drift, safety constraints, and
explainability.

Deep reinforcement learning and similar methods
promise adaptive policies for complex systems, but
real-world acceptance hinges on monitoring for drift,
ensuring safe exploration (which is often off-limits for
safety-critical assets), and making results explainable.
Even with strong simulation results, organizations will
only deploy these methods if model updates are
governed, validation is time-based, and residual risk is
reported in familiar, practical terms.

Many studies leave out key details: vague cost
assumptions, missing constraints, no time-based
validation, and no sensitivity checks. Systematic
review standards call for full transparency and
completeness. RBM optimization research should
follow suit by publishing exact objective functions
(with units), clear constraint definitions, data split
methods, parameter sources, and scenario setups. To
encourage full transparency, a micro-checklist could
be utilized as a prompt for authors: 'Have you shared
the objective function units?', 'Have you clarified all
constraints?', and 'Have you detailed your data split
methods?' This concise micro-checklist aligns with
PRISMA culture, nudging authors towards clearer
reporting.

Many studies leave out key details: vague cost
assumptions, missing constraints, no time-based
validation, and no sensitivity checks. Systematic
review standards call for full transparency and
completeness. RBM optimization research should
follow suit by publishing exact objective functions
(with units), clear constraint definitions, data split
methods, parameter sources, and scenario setups.

11.10 Theme J: A practical “minimum viable RBM
optimization” blueprint.
Synthesizing the evidence, a minimum viable
blueprint has the following components:

(1) Define criticality tiers and tolerability thresholds
with governance ownership. Conduct this review
quarterly to ensure alignment and accountability.

(2) Build downtime and MTTR distributions from
historical work orders; separate planned/unplanned
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downtime. Update these distributions monthly for
better accuracy and responsiveness.

(3) Create a simple risk model that maps failure
likelihood to downtime and consequence by tier.
Conduct an initial setup and review biannually,
allowing adaptations as data improves.

(4) Implement constraint-aware scheduling with
outage windows and crew capacity. Review and adjust
this scheduling weekly to maintain effective execution
with changing operational needs.

(5) Report residual risk by tier and produce an
executable schedule. This should be part of a monthly
operational review to keep task execution on track and
transparent.

(6) Monitor execution outcomes and update
downtime/cost parameters. A weekly cadence ensures
you consistently capture deviations and quickly
implement necessary corrections.

This blueprint can be This blueprint works even
without advanced machine learning. It delivers quick
wins by producing actionable work programs backed
by clear risk logic. As data quality and governance
improve, teams can add advanced methods like
portfolio optimization, surrogate-assisted digital
twins, and learning-based policies or measurements:
what should be reported to compare studies.

To enable comparison across papers and domains, the
review recommends reporting at least:
- Expected downtime hours avoided (availability
metric).

- MTTR mean and tail (maintainability metric).
- Residual risk by criticality tier (governance metric).

- Lifecycle cost with clear decomposition (finance
metric).

- Workload stability (execution metric).

These measures translaThese measures feed straight
into operational planning and can be standardized to
compare results across different domains.

The 20202025 literature shows meaningful progress
in integrating optimization with risk modeling and in
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expanding beyond single-objective reliability. The
remaining adoption gap is primarily operational:
downtime modeling, constraint realism, auditable
criticality, and temporal validation. Addressing these
gaps will enable RBM optimization methods to be
evaluated and adopted based on implementability as
well as mathematical novelty.

XII. EXTENDED METHODOLOGICAL
GUIDANCE

12. Extended methodological guidance for review and
implementation.

12.1 Review-method alignment with RBM topics.

Systematic reviews Engineering reviews often skip
over key details like search methods, screening
choices, and what data was pulled. PRISMA 2020 and
PRISMA-S set the bar for transparency. For RBM
optimization, this openness should cover not just
literature steps but also modeling steps. Studies should
spell out their objective functions (with units),
constraint sets, decision timelines, and what
information was available when decisions were made.
These details show whether a planner could actually
use the approach without hidden surprises. The fields
that support synthesis.

This review suggests a minimum data extraction
checklist for RBM optimization papers: domain and
asset type, asset count, decision variables (like
intervals or task start times), objective functions and
weights, explicit RAMS outputs, how criticality is
defined (static or dynamic), cost breakdowns
(preventive, corrective, outage, inspection, spares),
constraints (crew, outage, access, spares, precedence),
how uncertainty is handled, evaluation design
(synthetic, backtest, pilot), and reproducibility details
(data access, pseudo-code, solver settings).

12.3 Example of a RAMS-C3 data extraction table.

A review paper can include a table that summarizes
these fields for A moA review can include a summary
table covering these fields for the most representative
studies. Even if the full table is big, a compact sample
boosts clarity. For instance, a table listing 10—15 key
papers across different methods can show at a glance
which ones modeled downtime, used tiered criticality,
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included outage windows, or applied temporal
validation. This gives structured evidence without
needing a full meta-analysis.

A practical deployment methodology works as an
iterative spiral:

Phase 0—Scoping: define asset boundary, governance
ownership, and what decisions the system will support
(ranking, scheduling, or portfolio).

Phase 1—Baseline measurement: quantify current
downtime, cost, and failure frequency by asset tier;
establish data quality gaps.

Phase 2—Model development: build a simple risk
model and criticality tiering; calibrate downtime
distributions; validate on historical sequences.

Phase 3—Optimization and constraints: implement
constraint-aware scheduling and portfolio rules;
generate candidate plans; stress-test under disruption
scenarios.

Phase 4—Integration: export work orders to
CMMS/EAM; establish audit trails linking decisions
to risk rationale; implement change control.

Phase = 5—Continuous improvement:  monitor
outcomes, update parameters, and periodically review
criticality tiers and tolerability thresholds (ISO, 2024a,
2024b).

12.5 Governance and assurance for safety-critical
RBM.

For Tier 1 assets, governance often requires three
additional practices. First, risk acceptance criteria
must be explicit and approved. Second, the model
must support traceability: which evidence led to which
decision, and what residual risk remains. Third,
change control must be formal: model updates must be
versioned and reviewed, especially for data-driven
elements. This is consistent with the general direction
of asset management standards that emphasize risk-
aware decision-making and continual improvement
within an auditable system (ISO, 2024a, 2024Db).

12.6 How to reduce “evaluation optimism” in RBM
optimization studies.
Engineering optimization studies can inadvertently

ICONIC RESEARCH AND ENGINEERING JOURNALS 55



© FEB 2026 | IRE Journals | Volume 9 Issue 8 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV918-1714089

overestimate improvements. Three practical steps
reduce this:

(1) Use rolling-origin temporal evaluation when
historical sequences
(2) Introduce exogenous disruptions (crew absence,
part delay, additional failures) as stress tests.
(3) Report feasibility rates and constraint violations for
candidate schedules.
When learning-based methods are used, drift checks
and decision-time information constraints should be
documented (Zhang et al., 2020).

exist.

12.7 Summary.

This extended methods section builds on the thematic
synthesis by laying out a structured approach for
conducting and reporting RBM optimization reviews,
and by turning the evidence into a step-by-step
implementation method that fits governance needs and
real-world operations.
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