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Abstract- RBM has been one of the most popular tools 

applied recently regarding the asset management of 

logistics, transport, or infrastructure systems that are 

mostly driven simultaneously by demands of service 

continuity, safety, and economic viability. Although recent 

literature has produced somewhat advanced optimization 

approaches, with some of those not yet applied successfully 

because of gaps either in the description of service or 

economic or downtime information, this literature review 

discusses most of the peer-reviewed literature available 

within the publication range of 2020-2025 thoroughly with 

respect to optimization solution of RBM incorporating 

concepts of RAMS, life cycle costs, and asset criticalities. 

In this case, the prime areas of interest with emphasis on 

risk information into service information, economic 

information, or downtime information, along with man-

hour capacity or downtime information receive detailed 

attention and emphasis. A detailed RAMS C³ strategy is 

also presented to scrutinize the operational readiness of 

those studies, with supreme emphasis given to 

implementability itself. It has been gathered in this review 

that there might be certain limitations of those studies 

concerning either the description of availability or 

maintainability information, the usage of vague definitions 

of criticalities, or a lack of validation tests with real-world 

schedules. Consequently, based on those observations, 

either implementable economic information or 

implementable downtime information, risk information, or 

a checklist reporting format has been presented below.  
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I. INTRODUCTION 

 

Maintenance optimization is increasingly critical in 

sectors where service continuity and safety depend on 

physical assets, such as utilities, transportation, 

infrastructure, process industries, and public services. 

This trend is motivated by aging infrastructure, higher 

service expectations, funding restrictions, and a 

shortage of skilled labor. 

Reliability-based maintenance (RBM) aligns 

maintenance priorities with both the probability and 

consequences of failure, thereby increasing visibility 

in decision-making. However, RBM alone does not 

guarantee the feasibility of work plans. Models that 

neglect downtime schedules, workforce constraints, 

access limitations, or supply chain delays may produce 

conceptually perfect plans that are impractical in 

practice. Furthermore, an exclusive focus on reliability 

can veil vital concerns such as repair duration, 

downtime costs, and safety risks. 

The Reliability, Availability, Maintainability, and 

Safety (RAMS) framework furnishes a standardized 

approach for linking technical reliability to operational 

performance. Availability is influenced by the 

modeling of downtime. Maintainability reflects the 

speed and agreement with which assets can be 

restored. Safety encompasses the identification and 

limitation of hazardous events. Recent revisions to 

ISO 55000 and ISO 55001 (ISO, 2024a, 2024b) 

reinforce these principles by establishing auditable 

requirements for goal setting, risk awareness, and 

continuous improvement. Under these standards, 

optimization is integrated into an expanded 

governance framework rather than being treated solely 

as a technical activity. 

This review addresses a clear gap in the literature: the 

absence of a synthesis that evaluates RBM 

optimization methods from the perspective of 

operational capability, including applied challenges, 

transparency in criticality assessment, and realistic 

validation, rather than focusing exclusively on 

algorithmic sophistication. 

1.1 Aim, objectives, and research questions 

Aim: To synthesize peer-reviewed research (2020–

2025) on RBM optimization that integrates RAMS, 

cost, and criticality, and to propose metrics and 

reporting guidelines that facilitate deployable 

solutions. 

Objectives: 
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• Identify how studies model RAMS 

consequences. 

• Examine how lifecycle cost, authenticity, and 

budget limits are represented. 

• Characterize criticality modeling strategies. 

• Classify optimization and scheduling 

techniques. 

• Develop a deployment ready reporting and 

evaluation checklist. 

Research questions: 

1. How is risk translated into RAMS outcomes? 

2. How are cost and actual conditions encoded? 

3. How is criticality defined and validated? 

4. Which modeling strategies show the 

strongest potential for operational transfer? 

Unique contribution: The introduction of the RAMS 

C³ analytic system, a structured reporting checklist, 

and a set of standardized operational metrics that 

enable cross-study comparison across both 

implementability and algorithmic innovation. 

II. CONCEPTUAL BACKGROUND 

Risk-Based Maintenance (RBM) is a decision process 

that involves gathering evidence, assessing risks and 

possible outcomes, choosing actions within real-world 

limits, carrying out plans, and learning from the 

results. The RAMS framework Reliability, 

Availability, Maintainability, and Safety connects the 

dependability of each part to overall service, 

repairability, and safety risks. Criticality shows how 

much a failure would disrupt the mission, and this can 

change as backup systems are added or removed. 

RBM shares methods with Risk-Based Inspection 

(RBI) and Condition-Based Maintenance (CBM). 

Adaptive RBI planning shows inspection timing can 

be optimized by reducing risk and uncertainty (Yang 

& Frangopol, 2021). CBM scheduling frameworks for 

fleets highlight the need to turn prognostic evidence 

into feasible schedules that consider capacity 

constraints (Tseremoglou et al., 2024). Surrogate-

assisted methods enable exploration when direct 

evaluations are computationally intensive (Greiner & 

Cacereño, 2024). 

III. METHODS 

The review followed PRISMA 2020 (Page et al., 

2021) and PRISMA-S (Rethlefsen et al., 2021) 

guidelines, consistent with evidence synthesis 

recommendations (Aromataris & Munn, 2020). 

Eligibility criteria included peer-reviewed 

maintenance decision studies from 2020 to 2025 that 

explicitly addressed risk or consequence and 

incorporated at least two dimensions among RAMS, 

cost or lifecycle cost (LCC), criticality, and 

operational constraints. By aligning each eligibility 

dimension with a governance question, like 'Who 

signs off on downtime risk?' or 'Who is accountable 

for cost management?', the selection logic becomes 

more tangible and relatable, emphasizing decision 

ownership. The literature search encompassed Scopus, 

Web of Science, IEEE Xplore, and Engineering 

Village, using terms related to RBM, RBI, Reliability-

Centered Maintenance (RCM), CBM, optimization, 

scheduling, portfolio, RAMS, cost, and criticality. 

Records were de-duplicated, screened, and extracted 

for information on domain, decision variables, 

objectives, constraints, uncertainty, data utilization, 

and validation. 

 

Table 1. Eligibility criteria (summary) 
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Include Exclude 

2020–2025 

peer‑reviewed 

RBM/RBI/CBM 

maintenance decision 

studies 

Outside 2020–2025; 

non‑peer‑reviewed 

Optimization output 

with explicit 

risk/consequence 

Detection-only outputs 

≥2 dimensions among 

RAMS, cost/LCC, 

criticality, operational 

constraints 

Single-metric reliability 

optimization 

A qualitative synthesis was conducted, applying 

RAMS-C3 readiness criteria: RAMS mapping, cost 

realism, criticality transparency, and constraint 

realism. Unlike traditional RAMS frameworks, 

RAMS-C3 places a stronger emphasis on real-world 

implementation by explicitly incorporating the 

dynamic interplay between these elements. It goes 

beyond by challenging conventional reliability models 

to integrate constraints and operational variables, 

thereby providing a more transparent and practical 

approach to understanding and managing critical 

systems. This enhanced clarity not only strengthens 

decision-making but also aligns it with the evolving 

demand for accountable and adaptable maintenance 

strategies. 

Figure 1. The included studies span infrastructure 

networks, fleets, process industries, and 

manufacturing sectors. Publication volume increased 

from 2020 to 2025, reflecting a growing emphasis on 

integrating optimization with digital decision support. 

Decision types are categorized as policy optimization, 

constrained scheduling, and portfolio selection. The 

RAMS-C3 framework (Figure 2) was applied to assess 

operational readiness. 

Figure 2. RAMS-C3 synthesis framework used in this 

review. 

Figure 3. Trend of included studies (illustrative 

counts) across 2020–2025. 

Figure 4. Illustrative cost–risk Pareto tradeoff 

(synthetic example). 

4.4 Risk formulation patterns 

Risk is usually defined as expected loss, which is the 

chance something goes wrong multiplied by the cost 

or impact. Consequences can include repair costs, lost 

service, or serious safety threats. The most useful 

studies turn technical details into real-world service 

impacts and clearly explain the effects of their 

assumptions, making it easier for organizations to 

manage and review their decisions. A simple guideline 
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to steer researchers could be: 'Model dollars when 

outages cost money; model hours when customers feel 

downtime.' This approach underscores the 

significance of tailoring consequence modeling to 

specific impacts, thereby aligning recommendations 

with practical realities. 

4.5 Uncertainty modeling and robustness 

Uncertainty manifests in several forms: condition 

uncertainty, failure-process uncertainty, consequence 

uncertainty, and operational uncertainty related to 

resources and logistics. Adaptive inspection planning 

addresses belief updates (Yang & Frangopol, 2021). 

While learning-based policies offer adaptability, they 

necessitate drift-aware validation and the 

incorporation of safety constraints (Zhang et al., 

2020). 

4.6 Validation and evaluation designs 

Evaluation methods include using synthetic 

simulations, parameterized simulations, testing over 

time, and small pilot studies. At a minimum, good 

practice means using time-based validation, stress 

tests with different scenarios, and clear data splitting, 

following PRISMA-style transparency (Page et al., 

2021). 

4.7 Taxonomy of optimization formulations 

Optimization formulations include policy 

optimization (MDP/POMDP), constrained scheduling 

(MILP or metaheuristics), portfolio selection (multi-

objective evolutionary algorithms), and hybrid 

approaches. Dynamic scheduling shows how capacity 

limits affect decisions in fleet CBM contexts 

(Tseremoglou et al., 2024). 

Table 2. Method families and operational readiness 

observations (2020–2025) 

Method family Decision 

variable 

Strengths Gaps 

MDP/POMDP Policy 

threshol

ds 

Uncertaint

y-aware 

policies 

Scalability; 

maintainabili

ty simplified 

MILP/metaheurist

ics 

Schedul

es 

Constraint 

faithful; 

executable 

Often 

deterministic 

inputs 

MOEAs Portfolio

s 

Tradeoff 

visibility 

Selection 

rules 

underreporte

d 

Data-driven/RL Adaptiv

e 

policies 

Learns 

from data 

Drift/leakage 

underreporte

d 

V. RAMS-C3 SYNTHESIS: INTEGRATED 

FINDINGS 

5.1 RAMS integration 

Reliability models are often robust, but availability 

and maintainability tend to get shortchanged. Effective 

planning requires a close look at how downtime is 

spread out, and a clear split between scheduled and 

surprise outages. If safety is treated as just another 

penalty, real risks can slip through unnoticed; 

governance-minded models treat safety as a hard 

boundary, making any leftover risk visible. Reviews 

of critical infrastructure reveal that RAMS reporting is 

still inconsistent across the field. Cost estimCost 

estimates are more reliable when lifecycle cost (LCC) 

is broken down into real components like preventive 

and corrective work, inspections, spare parts, logistics, 

and downtime penalties. When subsystems depend on 

each other, the balance between cost and keeping 

things running can change a lot. Surrogate-assisted 

optimization allows planners to test more scenarios in 

digital twin environments without slowing down the 

process.icality transparency and auditability 

Criticality needs to be clear and easy to audit. Industry 

4.0 RBM suggests updating criticality as new evidence 

and operating conditions change, while keeping 

records for traceability (El-Thalji et al., 2025). 

Adaptive inspection approaches say criticality should 

be tied to how good the evidence is and how much 

uncertainty is reduced (Yang & Frangopol, 2021). As 

a self-checkpoint, consider asking, 'If an auditor 

reviewed this plan next year, could they trace each tier 

change back to evidence?' Embedding this question 

reinforces the transparency ethos. 
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5.4 Constraints, schedules, and execution 

Constraints are the gatekeepers of any optimization 

plan—they determine what is actually possible. In 

transport and utilities, outages must fit into narrow 

time slots. Fleet maintenance hinges on hangar space 

and spare parts. For civil infrastructure, strict access 

rules and safety permits dictate when crews can get to 

work. Scheduling that takes constraints into account is 

a key part of RBM. Mixed-integer models can make 

sure crew hours, task order, and blackout periods are 

followed. Metaheuristic methods are flexible for 

complex problems but need to check if solutions are 

actually possible. Fleet maintenance planning shows 

that even accurate CBM predictions do not ensure 

execution if schedules are not feasible; capacity 

constraints can force deferral and alter risk posture 

(Tseremoglou et al., 2024). In rail track maintenance, 

decision support models integrate reliability and 

availability with cost and realistic planning cycles 

(Kasraei et al., 2022). Rolling stock policy research 

highlights that maintenance proStrong governance 

starts with a schedule that can actually be delivered. 

Every task is assigned a date, a responsible person, and 

a planned outage window. Any leftover risk is tracked 

by tying it directly to delayed tasks, making 

accountability clear. task gets a date, an owner, and a 

planned outage. Any remaining risk can be tracked by 

linking it to tasks that are delayed 

Table 3. Deployment-oriented metrics mapped to 

RAMS-C3 

Metric Dimension Example 

computation 

Why it 

matters 

Risk 

reduced 

per dollar 

Cost + risk (Risk0−Risk1)/LC

C 

Value-

for-

money 

Avoided 

unavailabi

lity 

Availability Downtime0−Down

time1 

SLA 

linkage 

MTTR 

distributio

n 

Maintainabi

lity 

Mean + p90 Tail risk 

Residual 

risk by tier 

Criticality Risk(T1/T2/T3) Auditabil

ity 

Workload 

stability 

Constraints StdDev weekly 

hours 

Executio

n success 

VI. DEPLOYMENT-ORIENTED SYNTHESIS 

AND DESIGN GUIDANCE 

6.1 From model to maintenance program 

Bringing RBM to life takes more than just an 

optimization engine—it needs a clear decision process 

and the right supporting materials. This section gathers 

hands-on design guidance drawn from research and 

real-world experience. 

6.2 Data requirements and minimum viable RBM 

A simple RBM program can begin with just the 

essentials: a list of assets, logs of failures and 

downtime, cost data, and a straightforward method for 

ranking criticality. As better data rolls in, the program 

can grow to include condition-based maintenance and 

digital twin capabilities. 

6.4 Normalization and comparability 

Comparing assets calls for careful data normalization. 

Governance-friendly approaches steer clear of putting 

a dollar value on safety; instead, they set safety tiers as 

boundaries and focus optimization on cost and 

availability within those limits. 

6.5 Deployment gets smoother with proven patterns: 

two-stage processes, tier-aware constraints, objectives 

that factor in downtime, scenario libraries for testing, 

transparent risk reporting, and solid change control 

routines. 

6.6 RAMS modeling deep dive 

A frequent problem when comparing studies is that 

RAMS is sometimes treated as just reliability. For 

real-world use, a basic RAMS model should make 

clear: 

(i) Reliability: failure model structure (constant 

hazard, Weibull, competing risks, state-dependent 

hazard) and how condition affects the hazard. 
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(ii) Availability: how downtime is calculated. 

Availability depends on both failure frequency and 

restoration duration. Restoration duration includes 

detection, diagnosis, travel, access, repair, testing, and 

return-to-service. Many models use a single MTTR 

parameter, but deployments benefit from decomposed 

downtime, which identifies improvement levers such 

as spares, procedures, and staffing. 

(iii) Maintainability: variability and tail risk. Two 

interventions may have similar mean MTTR but 

different 90th percentile MTTR; the higher value 

increases outage planning risk. Including a distribution 

supports realistic scheduling buffers.  

(iv) Safety: scenario representation. For safety-critical 

assets, safety should be represented through hazard 

scenarios and tolerability. Instead of monetizing 

safety, many organizations treat safety risk as a 

constraint and require explicit residual risk reporting. 

Mapping RAMS to optimization. In practice, RAMS 

variables appear in optimization in several ways: 

- Reliability influences expected failures and, 

therefore, corrective workload. 

- Availability is represented by downtime cost or a 

direct objective (minimize unavailability). 

- Maintainability appears via repair-time distributions 

and resource consumption. 

- Safety appears via constraints, penalties, or tier-

specific thresholds. 

 

RAMS modeling and constraints go hand in hand: 

lengthy repairs tie up crews and can delay preventive 

tasks, shifting what gets top priority. Good RBM 

optimization should reveal not just the failures it 

prevents, but also the expected workload and 

downtime that come with each plan. 

When assessing RAMS models, align them with how 

and when decisions are made. If planning happens 

weekly, downtime and crew schedules should be 

modeled week by week. For annual decisions, 

summaries might suffice, but outage limits still need 

attention. Report RAMS results in down-to-earth 

terms: hours of downtime, percent unavailability, 

MTTR distributions, and safety risk by tier. This 

practical approach makes adoption easier and 

addresses the reporting gaps highlighted in systematic 

reviews. 

6.7 Lifecycle cost deep dive 

6.9 Lifecycle cost modeling deep dive. Cost is often 

the bridge between engineering metrics and 

governance, but it can be misleading if incomplete. 

Direct maintenance cost includes labor, materials, 

contractors, and equipment. Indirect costs include 

outage penalties, lost production, customer 

compensation, and reputational impacts. Some sectors 

quantify indirect cost as a penalty per hour of 

downtime; others use customer-minutes interrupted or 

energy-not-served. For safety, direct monetization 

may be ethically or regulatorily inappropriate, so 

safety is commonly treated separately. 

Lifecycle cost (LCC) in RBM planning typically 

includes: 

- Preventive maintenance cost (planned tasks) 

- Corrective maintenance cost (unplanned failures) 

- Inspection/monitoring cost 

- Spare parts and logistics cost, including lead-time 

buffers 

- Downtime and service disruption cost 

- End-of-life replacement or refurbishment cost 

 

Realistic cost estimates must fit the rhythm of budget 

cycles: annual budgets are locked in, and mid-year 

changes require special approval. Portfolio models 

that skip this step risk proposing spending plans that 

simply cannot be put into action. Another challenge is 

the tug-of-war between cost and constraints. A plan 

that slashes expenses may backfire if it overloads 

teams in a short window. To counter this, some studies 

aim to spread out the workload or cap weekly labor, 

keeping deployment steady and sustainable. 

Dependencies change costs. When subsystems depend 

on each other, the best mix of preventive and 

corrective actions changes, and the balance between 

cost and availability shifts (Mellal & Zio, 2022). This 

means LCC estimates shouldn't assume parts fail 

independently if they share environments, causes, or 

resources. Timing matters, too: if cost calculations 

require heavy simulations, surrogate-assisted 
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optimization offers a shortcut, letting planners explore 

more options without bogging down the planning 

process. 

6.8 Criticality taxonomy deep dive 

6.10 Criticality taxonomy and implementation 

guidance. Criticality is often described as 'importance', 

but should be operationalized as mission impact under 

failure. 

Tier-based criticality is recommended for deployment 

because tiers map to governance: different review 

levels, tolerability thresholds, and reporting 

expectations. A practical criticality taxonomy can 

include: 

- Safety-critical tier: failure can lead to harm. Requires 

strict tolerability constraints and explicit residual risk 

reporting. 

- Service-critical tier: failure causes major service 

disruption or significant customer impact. 

- Cost-critical tier: failure causes high repair cost or 

production loss but limited safety risk. 

- Low-criticality is not set in stone. Shifts in 

redundancy, asset usage, or external conditions can 

bump an asset up or down the tiers. Industry 4.0 RBM 

recommends updating criticality as fresh evidence 

arrives, with every change logged and explained for 

audit trails 2025). Any changes in tier should be 

logged with reasons to support audits. 

Criticality is used in optimization in several ways: as 

weights, limits, service requirements, or rules for 

setting priorities in schedules. Using tier-specific 

limits works well for governance because it allows 

clear statements like 'Tier 1 residual risk is below the 

set threshold.' 

For deployment, criticality should be tied to the 

strength of the evidence. Adaptive inspections reduce 

uncertainty, shifting both risk and how critical an asset 

appears in decision-making. That means criticality 

reviews should go hand in hand with inspection and 

monitoring results. 

When reporting, studies should explain how they 

define criticality and show how they assign assets to 

tiers, even if the method is simple. This is needed so 

others can use the results. 

6.9 Cross-domain case synthesis 

Across every field, constraints set the boundaries of 

what can be achieved, while maintainability is a 

hidden strength that is often missed. Criticality tiers 

make governance smoother. Sectors differ in how they 

value consequences, the data they collect, and how 

frequently they make decisions. To enhance cross-

domain applicability, consider including a qualifying 

phrase, such as 'in contexts where outage windows are 

pre-approved', which helps readers assess the 

transferability of the guidance to their own 

environments. 

VII. REPORTING CHECKLIST AND RAMS-C3 

SCORING RUBRIC 

Transparent reporting paves the way for others to use 

and build on your findings. A simple checklist and an 

optional readiness score—rooted in PRISMA 

transparency and ISO asset governance—can make 

adoption much smoother. 

7.3 Example operational To bridge RBM research and 

real-world practice, it helps to show how model results 

plug into maintenance management systems. Each 

asset gets a unique ID and is mapped to its location, 

function, redundancy group, and owner. undancy 

group, and ownership. 

 

Step 2: Define criticality tiers and tolerability 

thresholds. This includes specifying what constitutes 

unacceptable risk for Tier 1 assets (e.g., safety risk 

threshold), and service-level expectations for Tier 2 

assets (e.g., maximum expected downtime per 

quarter). 

Step 3: Assemble evidence and calibrate models. 

Evidence may include condition indicators, inspection 

results, failure history, and downtime/MTTR records. 

The risk model estimates failure probability over the 

planning horizon and links failures to consequences 

(downtime, penalties, hazards). 

Step 4: Select the optimization output type. For annual 

planning, a portfolio output is useful: which 

interventions to fund and execute. For monthly or 

weekly planning, constrained scheduling is needed: 

exact timing within outage windows. 

Step 5: Run optimization with feasibility checks. The 

optimizer produces candidate plans; each plan is 
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checked for crew hours, outage window compliance, 

and spare availability. Feasibility checks are as 

important as objective value. 

Step 6: Produce governance artifacts. For each plan, 

produce:  

(i) residual risk by tier;  

(ii) expected downtime by period;  

(iii) spend profile by month;  

(iv) top deferred risks and associated monitoring 

triggers. 

Step 7: Publish to execution systems. The chosen 

schedule is exported as work orders, each with 

assigned crews, planned outages, parts list, and 

acceptance criteria. A link from each work order to its 

risk rationale supports auditability. 

Step 8: Monitor and update. During execution, actual 

downtime and costs are recorded. Deviations (long 

repairs, unexpected failures) trigger model updates 

and re-planning. 

 RBM studies should showcase outputs like a ranked 

intervention list with criticality tiers and expected risk 

cuts, an outage calendar, a chart of remaining risk by 

tier, and a workload histogram. These examples line 

up with the reporting checklist and make real-world 

adoption easier. 

Category Minimum items Artifacts 

Scope Asset boundary; 

horizon; cadence 

Hierarchy; 

outage 

calendar 

RAMS Downtime 

distribution; 

maintainability; safety 

thresholds 

MTTR p90; 

hazard 

scenarios 

Cost LCC + budgets Budget 

profile; 

penalty model 

Criticality Tier definitions + 

mapping logic 

Tier matrix; 

redundancy 

map 

Constraints Crews, spares, access, 

windows 

Roster; lead 

times 

Validation Temporal split; stress 

tests 

Backtest; 

scenarios 

Governance Residual risk + 

deferrals 

Risk register; 

audit trail 

VIII. DISCUSSION 

The most practical studies are those that stay grounded 

in real-world constraints, spell out criticality clearly, 

and rely on time-based validation. While learning-

based methods and digital twins show promise, safety-

critical assets demand strong governance and vigilant 

monitoring for any changes. Threats Common pitfalls 

include overfitting in simulations, data leaks, missed 

constraint violations, fuzzy criticality, and apples-to-

oranges metrics. To guard against these, use scenario 

stress tests, time-based backtesting, feasibility checks, 

clear tier definitions, and practical, comparable 

metrics. 

IX. FUTURE RESEARCH AGENDA 

Top priorities include building benchmarks that track 

changes over time, creating unified definitions for 

criticality, optimizing reliability and maintainability 

side by side, setting standard operational metrics, 

developing governance-first tools, and reporting 

surrogate errors transparently. 

X. CONCLUSION 

RBM optimization research is moving forward, but 

real-world readiness hinges on solid modeling of 

downtime and maintainability, realistic constraints, 

and transparent criticality tracking. The RAMS-C3 

framework brings these elements together and 

provides a checklist to help teams compare and 

prepare for deployment. 
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11. This section dives deeper into the key themes that 

shape practical RBM optimization for RAMS, cost, 

and criticality. The aim is to turn the latest research 

(2020–2025) into actionable design choices, 

spotlighting where the evidence is solid and where 

assumptions are most common. While earlier sections 

covered the methods, here we explore how those 

methods are actually applied, which modeling 

decisions make the biggest difference, and which 

reporting details determine if others can use and 

replicate the work. we can use and repeat the work. 

11.1 Theme A: “Risk” is not a single number—

consequence modeling shapes decisions more than 

likelihood modeling. 

Across the included literature, likelihood is often 

modeled with familiar reliability or degradation 

models: Weibull hazard, Markov transitions, 

competing risks, or state-dependent hazard driven by 

condition indicators. In many cases, different 

likelihood models produce similar relative rankings, 

especially when data are sparse, and uncertainty 

dominates. By contrast, consequence modeling 

frequently changes recommendations. If consequence 

is modeled purely as direct repair cost, preventive 

work tends to cluster around high-failure-frequency 

assets. If consequence includes service unavailability, 

preventive work shifts toward assets with long 

restoration times and high customer exposure. If safety 

is modeled as a constraint, the feasible plan region 

changes: certain deferrals become unacceptable 

regardless of cost efficiency. 

The takeaway: RBM optimization should focus early 

modeling efforts on how consequences are structured. 

A simple hazard model paired with a detailed 

downtime and service disruption model can beat a 

fancy hazard model that overlooks downtime. This fits 

with RAMS thinking—availability depends on both 

how often things fail and how long they stay down. In 

practice, decision makers care more about the outages 

or harm they can avoid than about the technical hazard 

rate. That’s why this review treats realistic 

consequence modeling as a top priority for readiness. 

11.2 Theme B: Availability and maintenance. Most 

studies highlight gains in reliability, but few spell out 

improvements in availability—and when they do, the 

definitions jump around: instantaneous, operational, or 

service availability. Maintainability is even more 

inconsistently defined. Yet in the real world, 

maintenance plans are judged by how long outages 

last, how confident teams are in restoring service, and 

how predictable the workload can be and workload A 

RAMS model built for deployment should always split 

planned from unplanned downtime, since each is 

managed in its own way. Planned downtime can be 

scheduled with customer alerts and backup plans, 

while unplanned downtime is what really hurts a 

company’s reputation. Maintainability should be 

broken down into actionable steps: detection, access, 

diagnosis, repair, testing, and getting back online. This 

breakdown lets teams see where investments will cut 

the worst-case downtime. Systematic reviews show 

that RAMS definitions and metrics are all over the 

map, making it hard to compare RBM optimizations. 

A simple fix—reporting both the average and the 90th 

percentile MTTR—can make results much clearer. 

interpretable. 

11.3 Theme C: Criticality is a governance construct; 

tiered models are easier to adopt than weighted scores. 

Many studies treat criticality as just a number that 

multiplies risk or downtime, which is easy for math 

but confusing in practice—a weight of 5 or 10 rarely 

means much to anyone. Different teams see criticality 

through their own lens: safety cares about hazards, 

operations about service, and finance about money. 

Industry 4.0 RBM says criticality should be updated as 

new evidence and conditions emerge, but if these 

changes aren’t tracked, it can lead to confusion and 

shaky governance. 

Tiered criticality offers a hands-on fix. Tiers set clear 

governance lines: Tier 1 assets need strict risk controls 

and top-level review, Tier 2 assets get service-level 

protection, and Tier 3 assets are open to opportunistic 

maintenance. Tiers can shift as redundancy or 

operations change, as long as every move is logged 

and reviewed. In optimization, tier-specific constraints 

produce results that stand up in audits: for example, 

'Tier 1 safety risk stays below the threshold, Tier 2 

downtime drops by X% within budget.' This approach 

matches ISO asset management’s call for risk-based, 

objective-aligned planning.D: Constrained scheduling 

is where “optimization” meets reality. 

Even when studies develop elegant risk and cost 
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models, execution often fails because resource 

constraints are not encoded. Constrained scheduling 

includes: outage windows, crew availability, skill 

constraints, precedence constraints, access permits, 

and spare parts lead times. In fleet contexts, hangar 

capacity and aircraft availability drive scheduling 

feasibility; in rail contexts, track possession windows 

and safety permits dominate. A dynamic scheduling 

framework for aircraft fleet CBM demonstrates how 

capacity constraints can force deferral and change the 

risk profile, even if the underlying condition 

prediction is accurate (Tseremoglou et al., 2024). A 

railway track geometry decision support model 

illustrates integration of cost, reliability, and 

availability into planning (Kasraei et al., 2022). 

Rolling stock policy development work further 

emphasizes that maintenance processes evolve and 

thus policies must accommodate change (Kumari et 

al., 2025). 

When it comes to real-world adoption, realistic 

constraints matter more than which solver you pick. 

Mixed-integer programming is great for capturing 

every rule, but metaheuristics work just as well if they 

check feasibility and test sensitivity. For deployment, 

what counts most are three things: a schedule you can 

actually execute, a feasibility report covering crew 

hours and window compliance, and a clear picture of 

the residual risk after scheduling. 

11.5 Theme E: Multi-objective optimization is most 

valuable when paired with a decision selection rule. 

Many RBM problems are multi-objective: minimize 

risk, minimize cost, minimize downtime, and smooth 

workload. Multi-objective evolutionary algorithms are 

widely used because they produce Pareto sets. Yet, in 

practice, a Pareto set is not a decision. Governance 

requires a selection rule: a method for choosing one 

plan from the set based on thresholds, stakeholder 

preferences, or regulatory constraints. Surrogate-

assisted multiobjective approaches enable efficient 

exploration when evaluations are expensive and are 

increasingly used in digital-twin-like scenarios 

practical way to choose among options is to use a 

tiered rule: set hard safety limits for Tier 1 assets, 

minimum availability for Tier 2, and then pick the plan 

with the lowest lifecycle cost that fits. Or, use a value-

for-money rule—select the plan that delivers the most 

risk reduction per dollar, as long as the workload stays 

manageable. Without a clear selection rule, studies 

risk being seen as academic rather than truly useful for 

decision makers. her than operational decision tools. 

11.6 Theme F: Dependency modeling shifts priorities 

and changes cost–availability tradeoffs. Assets rarely 

fail independently. Shared environments, common-

cause failures, and functional dependencies cause 

correlated failures. Dependency also exists in 

maintenance execution: a single outage may enable 

multiple interventions, or a delayed spare may delay 

multiple tasks. A multi-objective availability and cost 

optimization study with subsystem failure 

dependencies demonstrates that dependencies change 

optimal solutions and the shape of the cost-availability 

frontier (Mellal & Zio, 2022). 

For deployment, start simple with dependency 

modeling: group assets by redundancy or shared 

services. Even a rough map of dependencies can boost 

plan quality by avoiding underestimated consequences 

and spotting chances for joint work. To prevent 

misinterpretations during later reviews, authors should 

explicitly state in the abstract whether failures are 

assumed to be "independent" or "dependent." This 

small step can provide clarity and preemptively 

address potential misunderstandings. 

11.7 Theme G: Evidence quality and inspection 

planning are part of the optimization problem. 

RBM is not only about maintenance actions; it is also 

about evidence acquisition. Inspection and monitoring 

decisions change uncertainty, and thus change optimal 

maintenance timing. Risk-based inspection planning 

provides a clear example: inspection timing can be 

optimized to reduce uncertainty and risk over the life 

of a deteriorating structure (Yang & Frangopol, 2021). 

The RBM literature can incorporate similar logic by 

treating inspection and monitoring as decisions with 

costs and expected value of information. 

For deployment, organizations should see evidence 

programs—inspections, sensors, data pipelines—as 

investments to be prioritized with the same RAMS-C3 

logic. If uncertainty is what drives overly cautious 

maintenance, then better evidence can cut both risk 

and cost. 
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11.8 Theme H: Learning-based methods require 

additional governance—drift, safety constraints, and 

explainability. 

Deep reinforcement learning and similar methods 

promise adaptive policies for complex systems, but 

real-world acceptance hinges on monitoring for drift, 

ensuring safe exploration (which is often off-limits for 

safety-critical assets), and making results explainable. 

Even with strong simulation results, organizations will 

only deploy these methods if model updates are 

governed, validation is time-based, and residual risk is 

reported in familiar, practical terms. 

Many studies leave out key details: vague cost 

assumptions, missing constraints, no time-based 

validation, and no sensitivity checks. Systematic 

review standards call for full transparency and 

completeness. RBM optimization research should 

follow suit by publishing exact objective functions 

(with units), clear constraint definitions, data split 

methods, parameter sources, and scenario setups. To 

encourage full transparency, a micro-checklist could 

be utilized as a prompt for authors: 'Have you shared 

the objective function units?', 'Have you clarified all 

constraints?', and 'Have you detailed your data split 

methods?' This concise micro-checklist aligns with 

PRISMA culture, nudging authors towards clearer 

reporting. 

Many studies leave out key details: vague cost 

assumptions, missing constraints, no time-based 

validation, and no sensitivity checks. Systematic 

review standards call for full transparency and 

completeness. RBM optimization research should 

follow suit by publishing exact objective functions 

(with units), clear constraint definitions, data split 

methods, parameter sources, and scenario setups. 

11.10 Theme J: A practical “minimum viable RBM 

optimization” blueprint. 

Synthesizing the evidence, a minimum viable 

blueprint has the following components: 

(1) Define criticality tiers and tolerability thresholds 

with governance ownership. Conduct this review 

quarterly to ensure alignment and accountability. 

(2) Build downtime and MTTR distributions from 

historical work orders; separate planned/unplanned 

downtime. Update these distributions monthly for 

better accuracy and responsiveness. 

(3) Create a simple risk model that maps failure 

likelihood to downtime and consequence by tier. 

Conduct an initial setup and review biannually, 

allowing adaptations as data improves. 

(4) Implement constraint-aware scheduling with 

outage windows and crew capacity. Review and adjust 

this scheduling weekly to maintain effective execution 

with changing operational needs. 

(5) Report residual risk by tier and produce an 

executable schedule. This should be part of a monthly 

operational review to keep task execution on track and 

transparent. 

(6) Monitor execution outcomes and update 

downtime/cost parameters. A weekly cadence ensures 

you consistently capture deviations and quickly 

implement necessary corrections. 

This blueprint can be This blueprint works even 

without advanced machine learning. It delivers quick 

wins by producing actionable work programs backed 

by clear risk logic. As data quality and governance 

improve, teams can add advanced methods like 

portfolio optimization, surrogate-assisted digital 

twins, and learning-based policies or measurements: 

what should be reported to compare studies. 

To enable comparison across papers and domains, the 

review recommends reporting at least: 

- Expected downtime hours avoided (availability 

metric). 

- MTTR mean and tail (maintainability metric). 

- Residual risk by criticality tier (governance metric). 

- Lifecycle cost with clear decomposition (finance 

metric). 

- Workload stability (execution metric). 

These measures translaThese measures feed straight 

into operational planning and can be standardized to 

compare results across different domains. 

The 2020–2025 literature shows meaningful progress 

in integrating optimization with risk modeling and in 
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expanding beyond single-objective reliability. The 

remaining adoption gap is primarily operational: 

downtime modeling, constraint realism, auditable 

criticality, and temporal validation. Addressing these 

gaps will enable RBM optimization methods to be 

evaluated and adopted based on implementability as 

well as mathematical novelty. 

XII. EXTENDED METHODOLOGICAL 

GUIDANCE 

12. Extended methodological guidance for review and 

implementation. 

12.1 Review-method alignment with RBM topics. 

Systematic reviews Engineering reviews often skip 

over key details like search methods, screening 

choices, and what data was pulled. PRISMA 2020 and 

PRISMA-S set the bar for transparency. For RBM 

optimization, this openness should cover not just 

literature steps but also modeling steps. Studies should 

spell out their objective functions (with units), 

constraint sets, decision timelines, and what 

information was available when decisions were made. 

These details show whether a planner could actually 

use the approach without hidden surprises. The fields 

that support synthesis. 

This review suggests a minimum data extraction 

checklist for RBM optimization papers: domain and 

asset type, asset count, decision variables (like 

intervals or task start times), objective functions and 

weights, explicit RAMS outputs, how criticality is 

defined (static or dynamic), cost breakdowns 

(preventive, corrective, outage, inspection, spares), 

constraints (crew, outage, access, spares, precedence), 

how uncertainty is handled, evaluation design 

(synthetic, backtest, pilot), and reproducibility details 

(data access, pseudo-code, solver settings). 

12.3 Example of a RAMS-C3 data extraction table. 

A review paper can include a table that summarizes 

these fields for A moA review can include a summary 

table covering these fields for the most representative 

studies. Even if the full table is big, a compact sample 

boosts clarity. For instance, a table listing 10–15 key 

papers across different methods can show at a glance 

which ones modeled downtime, used tiered criticality, 

included outage windows, or applied temporal 

validation. This gives structured evidence without 

needing a full meta-analysis. 

A practical deployment methodology works as an 

iterative spiral: 

Phase 0—Scoping: define asset boundary, governance 

ownership, and what decisions the system will support 

(ranking, scheduling, or portfolio). 

Phase 1—Baseline measurement: quantify current 

downtime, cost, and failure frequency by asset tier; 

establish data quality gaps. 

Phase 2—Model development: build a simple risk 

model and criticality tiering; calibrate downtime 

distributions; validate on historical sequences. 

Phase 3—Optimization and constraints: implement 

constraint-aware scheduling and portfolio rules; 

generate candidate plans; stress-test under disruption 

scenarios. 

Phase 4—Integration: export work orders to 

CMMS/EAM; establish audit trails linking decisions 

to risk rationale; implement change control. 

Phase 5—Continuous improvement: monitor 

outcomes, update parameters, and periodically review 

criticality tiers and tolerability thresholds (ISO, 2024a, 

2024b). 

12.5 Governance and assurance for safety-critical 

RBM. 

For Tier 1 assets, governance often requires three 

additional practices. First, risk acceptance criteria 

must be explicit and approved. Second, the model 

must support traceability: which evidence led to which 

decision, and what residual risk remains. Third, 

change control must be formal: model updates must be 

versioned and reviewed, especially for data-driven 

elements. This is consistent with the general direction 

of asset management standards that emphasize risk-

aware decision-making and continual improvement 

within an auditable system (ISO, 2024a, 2024b). 

12.6 How to reduce “evaluation optimism” in RBM 

optimization studies. 

Engineering optimization studies can inadvertently 
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overestimate improvements. Three practical steps 

reduce this: 

(1) Use rolling-origin temporal evaluation when 

historical sequences exist. 

(2) Introduce exogenous disruptions (crew absence, 

part delay, additional failures) as stress tests. 

(3) Report feasibility rates and constraint violations for 

candidate schedules. 

When learning-based methods are used, drift checks 

and decision-time information constraints should be 

documented (Zhang et al., 2020). 

12.7 Summary. 

This extended methods section builds on the thematic 

synthesis by laying out a structured approach for 

conducting and reporting RBM optimization reviews, 

and by turning the evidence into a step-by-step 

implementation method that fits governance needs and 

real-world operations. 
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