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Abstract- In the present work, we have deposited
SesolnsTesSns thin films using the thermal evaporation
technique under a vacuum of 107° Torr for phase change
studies. The films were then irradiated with a Transverse
Electrical Excitation at Atmospheric Pressure (TEA)
nitrogen laser for varying exposure times. X-ray structural
characterization indicated that the films are amorphous,
whereas the laser-irradiated thin films exhibit a crystalline
nature. Structural changes were further investigated using
FESEM. The results are discussed with respect to
structural aspects and the amorphous-to-crystalline phase
transition. The observed changes are attributed to the
interaction between incident photons and lone-pair
electrons, which influence the band gap. The optical
constants of the thin films were determined from
absorption spectra as a function of photonic energy in the
wavelength range of 400-900 nm, revealing a decrease in
the optical band gap and an increase in the absorption
coefficient with increasing laser irradiation time. The
reduction in the optical band gap is attributed to the change
in the film structure from an amorphous to a crystalline
Phase with increasing exposure time.

Keywords: Thin film, Laser-irradiation, Optical band gap,
XRD

L INTRODUCTION

In recent decades, extensive theoretical and
experimental studies have demonstrated the
remarkable properties of chalcogenide materials and
their significant role in the advancement of emerging
technologies for the benefit of mankind. Chalcogenide
materials are chemical compounds containing at least
one chalcogen element, S, Se and Te. Recent progress
in multimedia technologies has been driven by
increases in computer processing speed and data
storage density, along with the growing demand for
rewritable media. Among the various candidates,
phase-change (PC) materials based on chalcogenides
have emerged as one of the most promising materials
for rewritable data storage applications [1], [2].The
easier switching between amorphous-to-crystalline

IRE 1714121

phase of these materials makes them compatible for
information storage. Chalcogenide thin films have
attracted considerable attention and have been
systematically investigated over the past few decades.
Owing to their intriguing physical and optical
properties, they continue to be a focus of both
experimental and theoretical research. These materials
are well recognized as promising candidates for a wide
range of photonic applications, including ultrafast
optical switches, frequency converters, optical
amplifiers, infrared lasers, phase-change memories,
and infrared-transmitting optical fibers [3], [4].
Optical storage based on the amorphous—crystalline
phase transition exploits the significant changes in
optical reflectivity and absorption induced in certain
semiconductor—semimetal thin films through heat
treatment/laser irradiation. To study the possibilities of
several applications and improvements, researchers
are continuously worked on the investigations of
optical, structural and thermal properties of ternary
and quarternary chalcogenide glasses [5], [6], [7], [8].
These glassy materials are responsive to extraneous
means, such as Gamma irradiation, laser irradiation,
thermal annealing, electric field etc. because of their
flexible structure. The optical properties of these
materials altered due to irradiation. Irradiation excites
electrons and induces ionization, which can result in
atomic displacement within the material. The photo-
generated electrons undergo dynamic motion and are
subsequently trapped at defect or localized states,
leading to new electronic configurations. These
modifications significantly influence the optical
properties of the chalcogenide thin films. As a result,
the pronounced sensitivity of these glasses to gamma
irradiation, reflected in changes to their optical
behavior, renders them suitable for a wide range of
technological applications [9], [10], [11], [12].

Many workers have studied the effect of laser
irradiation on the optical properties of chalcogenide
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glasses [13], [14], [15], [16]. Laser-induced optical
properties change in Sb-S-Se chalcogenide thin films
has been investigated through FTIR and XPS
measurements by Naik et al. [17]. The variation in
structural, optical and electrical properties of thin
films of Pb-doped Ga-Se chalcogenide glasses before
and after laser irradiation has been studied by Alvi
[18]. The phase change studies of Gel5Se77Sb8 thin
films by laser irradiation have been done by Srivastava
et al. [19]. Parida et al. [20] has been studied the
influence of time dependent laser-irradiation for
tuning the linear—nonlinear optical response of
quaternary Ag-In-S-Se films for optoelectronic
applications. Deepika et al. [21] has been analyzed the
effect of 532 nm Nd:YAG laser irradiation on the
optical properties of GelSe2.5 glass film. Behara and
Naik have studied the optical parameters due to the
deposition and photo-induced diffusion of Te layer
into the chalcogenide As,Se; film [22]. Al-Hazmi [23]
studied the optical constants of
Se7sS1sAgio chalcogenide thin films and observed an
increase in optical band gap with increasing laser-
irradiation time. Mao et al. [24] analyzed composition-
dependent photostability of chalcogenide thin films
within a germanium-sulfur binary system under
femtosecond laser irradiation. The influence of
532 nm laser irradiation on the optical changes of
AgioTeioAsxSes quaternary thin films has been
studied by Das and his co-workers [25] This
irradiation influenced the structural, linear and
nonlinear optical parameters. Priyadarshini et al. [26]
depicted the laser irradiation-induced effect on the
optoelectrical and structural properties of thermally
evaporated BisInySess thin films with different
exposure durations. Jena and his coworkers [27]
analyzed the Stability of Ag>S/As,Ses thin films under
time-dependent laser irradiation and its impact on
linear-nonlinear optical properties for optoelectronic
applications. Sahoo et al. [28] reported the in-situ laser
irradiated changes in the nonlinear/linear optical
properties of AssoSesoSbig thin films for photonic
applications.

In the present work, we have taken Selenium (Se) due
to its appropriateness for PCM devices based on
reversible phase change property. However, these
materials suffer from aging effects, poor stability, and
high sensitivity [29]. These limitations can be
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mitigated by incorporating an appropriate metallic
additive, such as indium, into selenium. Indium-doped
selenium has applications in gas sensors,
thermoelectric materials, and solar cells [30], [31].
Furthermore, tellurium has been added to the Se—In
alloy to enhance its crystallinity and improve
corrosion resistance. Tellurium-based glasses are
widely used as active layers in memory devices
because of their low melting point and are considered
among the most promising materials for phase-change
memory applications [32], [33]. Metallic doping in
chalcogenides alters the average coordination number
and induces structural transformations in the glassy
matrix, leading to flexible, intermediate, and rigid
phases. In the present work, Sn has been incorporated
into the ternary Se-In-Te glassy alloy, which
enhances the glass-forming region and introduces
configurational and compositional disorder in the
glassy system [34], [35] . The aim of present work is
to study the influence of laser irradiation on structural
and optical properties of SesoInsTeosSns chalcogenide
thin films for phase change memory device
application.

II. EXPERIMENTAL

The melt-quenching technique was adopted for the
synthesization of SegolnsTeoSne chalcogenide glass
using 99.999 % pure elements. The materials were
weighted according to their atomic percentages and
sealed off in quartz ampoule under a high vacuum.
Further, the evacuated and sealed ampoule was placed
in a Temperature Controlled Furnace, where the
temperature of the furnace was increases in four steps.
Initially, at 673K for 2 h; 873 K for 2 h; 973 K for 3 h
and finally 1023 for 4 h. In the furnace, the ampoule
was shaken frequently for the homogeneity. Very fast
quenching in ice-water bath has been done to obtain
the glassy material. The glassy as well and the
amorphous nature of the sample was confirmed by
DSC measurements. Thin films of thickness 300 nm
of SegolnsTeoSne glass were prepared on glass/Si wafer
substrate by using Edward Coating Unit E-306
operated at 10 Torr, at a rate of 4 nm/s. To investigate
the phase-change study in SesolnsTeoSns thin films,
films were induced by TEA Nitrogen Laser having
pulse width: 1 ns, peak power energy density 3.5 X 10°
W/cm?, size of laser spot: 6 mm with peak power 100
kW and wavelength: 337.1 nm for 15, 25 and 35 min
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at room temperature. A Regaku X-ray diffractometer
Ultima IV was used for structural analysis of as-
deposited and irradiated thin films. The morphological
analysis of all films was done by field emission
scanning electron microscope (FESEM) (QUANT
FEG 450, Amsterdam, Netherlands). A UV-Vis—NIR
spectrophotometer (A JASCO, V-500) has been used
for optical absorption measurement of as-prepared and
irradiated thin films in the wavelength range 400-900
nm.

III.  RESULT AND DISCUSSION

The glassy and amorphous nature of the synthesized
SesolnsTeoSns material was confirmed by a non-
isothermal Differential Scanning Calorimetric (DSC)
scan performed at a heating rate of 25 K/min (shown
in Fig. 1). The endothermic peak corresponds to the
glass transition of the sample, as glass transition is a
relaxation process that requires heat absorption.
Further, the exothermic peak corresponds to the
crystallization of the material. The presence of well-
defined glass transition (Tg) and crystallization (Tc)
peaks verifies the glassy state of the material. The
values of T, and T. were determined to be 354 K and
398 K, respectively.

Exo

25 K/Min

Heat Flow ( mW)

Endo

T T T T T T
320 340 360 380 400 420 440 460
Temperature ( K)

Fig. 1: DSC Thermogram of SesolnsTesSne at heating
rate 25 K/min

Structural investigations of the as-prepared and laser-
irradiated films were carried out using High
Resolution X-ray diffraction (HRXRD) with a copper
target (Cu Kou radiation, A =
1.5406 A). The measurements were performed under
operating conditions of 40 kV and 30 mA, with a step
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size of 0.05°, a counting time of 2.5 s per step, and a
20 scan range from 10° to 70°. Fig. 2 represents the
X-Ray diffraction pattern of as-deposited and
irradiated thin films. The absence of sharp diffraction
peaks in the pattern of as-prepared film confirms its
amorphous nature, whereas the appearance of distinct
sharp peaks in the irradiated films indicates the
development of polycrystalline nature.

Laser Irradiated for 25 minutes

As-prepared

Intensity ( a. u.)

posshmsst s

T T 1
15 20 25 35 40 45 50 55 60 65 70 75
Angle( 260)

Fig. 2: X-ray pattern for as-prepared and laser
irradiated SesolnsTesSne chalcogenide thin films.

The surface morphology of the as-prepared and laser-
irradiated SesolnsTesSne chalcogenide glass thin films
deposited on Si (100) wafers were examined using
field-emission  scanning  electron  microscopy
(FESEM). The FESEM measurements were carried
out at an accelerating voltage of 20 kV with a working
distance of 1 cm. Fig. 3 presents the FESEM
micrographs of the as-prepared and laser-irradiated
thin films.

The FESEM micrographs indicate noticeable
structural changes accompanied by crystal growth as a
result of laser irradiation.
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F1g 3 FESEM Mlcrographs of as-prepared and
Laser irradiated SesolnsTeoSnes Thin Films

We have recorded the optical absorbance data for as-
prepared and laser crystallized thin films of
SesolnsTesSns in the wavelength span of 400-900 nm.
Using this data, we have been determined various
optical parameters such as absorption coefficient (o)
and optical band gap (Ey).

The absorbance is the measurement of light absorbed
by the sample under explicit conditions. Absorption
coefficient (o) has been calculated by using following
equation [36] :

a = Optical Absorbance/Thickness of the film (1)
The variations of a with incident radiation energy (hv)

for as-deposited and irradiated SesolnsTesSnes thin
films are shown in Fig. 4.
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Fig. 4: The plot of a versus incident radiation energy
(hv)
From Fig. 4, it has been found that a increases with the
incident photon energy as well as the irradiation time.
The values of absorption coefficients at 650 nm for
radiation time are shown in Table 1.

The dependence of optical band gap on the incident
radiation energy and absorption coefficient can be
described by the by Tauc’s relation [37]:

(ahv)* = A’ (hv-E,) ©)

Where A’ is a constant, E, is optical band gap and k is
an exponent which is may be 2, 1/2, 2/3 or 1/3,
depending on the transition nature [38]. For
SesolnsTeoSne thin films, we have obtained the best fit
plot for k = 2 which is representing direct transition.
The plots of (ahv) 2 versus incident energy (hv) for as-
prepared and laser irradiated SesolnsTesSne thin films
are shown in Fig. 5.
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The values of optical band gap for as-deposited and
laser irradiated SesolnsTesSne thin films have been
extrapolated by using the intersections on X-axis of
the straight line plots of Fig. 5 (Shown in Table 1).
Results are indicating that the band gap E, decreases
with the irradiation time which may be due to disorder
and defect variation in the present amorphous system
[39], [40]. Unsaturated bonds contribute to the
formation of localized defect states in the band
structure of amorphous solids. These localized states
play a crucial role in reducing the optical energy gap.
As the number of unsaturated defects increases, the
density of localized states in the band structure also
increases [41], which consequently leads to a decrease
in the optical energy gap Eg [42], [43].

Table-1 Optical parameters of as-prepared and laser-
irradiated thin films of SesolnsTesSne chalcogenide

glass.
Optical | As- 15 min. | 25 min. | 35 min.
constant | Prepar | laser- laser- laser-
] ed thin | irradiat | irradiat | irradiat

films ed thin | ed thin | ed thin
films films films
Absorpti | 1.46 1.87 2.06 2.37
on
coefficie
nt
()(10%)
(cm™) at
650 nm
Optical | 3.34 3.23 3.16 3.05
Band
Gap
(EJ(eV)

IV.  CONCLUSION

In the present research work, we have studied the
laser-irradiation effects on the crystal structure and
optical constants of SegoInsTeoSne thin films. The laser
irradiation causes the phase transformation from
amorphous to crystalline state. The absorption
mechanism is found to be direct transition. The
crystallization of SegolnsTeoSne thin films by laser
irradiation is accompanied by a decrease in the optical
band gap with irradiation time. This behavior is
attributed to the production of surface dangling bonds
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around the formed crystallites during the process of
crystallization. These transformations were studied
using X-ray diffraction and FESEM. The values of
absorption coefficient and extinction coefficient are
found to increase with increasing the laser-irradiation
time. All these parameters are very important in
characterizing a material for its applications in various
optoelectronic devices. Due to large absorption
coefficients and change in structural and optical
properties by laser—irradiation, there is a possibility of
using them as erasable phase change optical recording
material.
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