

Bridging the Gap: A Comparative Study of Mathematics Curriculum Reforms in Ghana and the United States

KENNETH BOAKYE¹, SAMUEL DARKEY OFORI², CHUKS SUNDAY OGBONA³, THOMAS JEROME YEBOAH⁴, MFORCHIVE ABDOULAYE BOBGA⁵

¹*Eastern Wayne High School, North Carolina, USA*

²*Lancaster High School, Lancaster, SC, USA*

³*Wellworks Ohio University, Athens*

⁴*University of South Africa*

⁵*Souq.com, UAE*

Abstract- This study provides an in-depth comparative examination of mathematics curriculum reforms within two contrasting educational contexts—Ghana and the United States—offering critical insights into how policy frameworks, pedagogical philosophies, and systemic structures shape the evolution of mathematics education. The purpose of the research was to explore the similarities and differences in reform approaches, assess the effectiveness of implementation strategies, and draw meaningful lessons to inform future policy directions. Guided by a qualitative comparative methodology, the study employed a thematic analysis of educational policy documents, scholarly literature, and empirical findings to construct a coherent understanding of the reform trajectories in both nations. The analysis revealed that while both Ghana and the United States aspire to enhance mathematical literacy, problem-solving capacity, and student-centered learning, their reform strategies are conditioned by contextual realities. The United States emphasizes standardization, accountability, and evidence-based instruction, supported by decentralized governance and advanced assessment mechanisms. Conversely, Ghana's reforms are anchored in post-colonial reconstruction, seeking to balance global pedagogical trends with local relevance, cultural identity, and equitable access to quality education. The study identified teacher preparedness, resource adequacy, and curriculum coherence as critical determinants of reform success. Findings further indicated that meaningful curriculum transformation depends not solely on content innovation but on robust teacher education, continuous professional development, and reflective policy implementation. The study concludes that sustained reform requires a contextualized yet globally informed framework that prioritizes inclusivity, adaptability, and lifelong learning competencies. Recommendations emphasize strengthening teacher professionalization, investing in technology-enhanced instruction, and promoting collaborative policy learning across national contexts. This research contributes to the global discourse on educational transformation, providing a blueprint for aligning

mathematics curriculum reforms with 21st-century demands.

Keywords: Curriculum Reform, Mathematics Education, Comparative Analysis, Educational Policy, Teacher Development, Global Learning.

I. INTRODUCTION

Mathematics education stands as a critical pillar in fostering national development, innovation, and global competitiveness. Over the decades, curriculum reforms have been central to improving mathematical literacy, problem-solving ability, and critical thinking among learners across nations (Aziabah, 2017; NCTM, 2018). Both Ghana and the United States have undertaken extensive reforms in mathematics curricula, reflecting broader shifts in educational philosophy, global standards, and the demands of modern economies (Schmidt & Houang, 2012). These reforms have emerged from a shared recognition that mathematics is not only a foundational discipline but also a strategic tool for sustainable national transformation.

Ghana's educational trajectory has been shaped by colonial legacies, socio-economic disparities, and the pursuit of post-independence modernization (Osei-Senyah, 2019). The nation's efforts to reform its mathematics curriculum have been geared towards enhancing conceptual understanding, creativity, and the applicability of mathematics to real-world contexts. The 2019 Standards-Based Curriculum, for instance, represents a deliberate attempt by the National Council for Curriculum and Assessment (NaCCA) to address learning outcomes misalignments and to align with 21st-century competencies such as

problem-solving and digital literacy (Adu-Addae, 2020). By contrast, the United States' curriculum reforms—particularly through the Common Core State Standards for Mathematics (CCSSM)—have been driven by a need for national consistency, equity, and global competitiveness in science, technology, engineering, and mathematics (STEM) education (Schmidt & Houang, 2012).

The comparative dimension between these two contexts is significant. Ghana's reforms are emerging within a developing-country framework characterized by limited resources, teacher shortages, and infrastructural challenges, while the U.S. operates within a highly diversified and technologically advanced system (Darling-Hammond, 2017). Nonetheless, both nations share common aspirations: to improve learner outcomes and to cultivate mathematically literate citizens capable of thriving in the knowledge economy (Boaler, 2015). Comparative educational analyses thus provide valuable insights into how national contexts influence curriculum design, implementation, and outcomes, highlighting the dynamic interplay between global educational trends and local realities (Stigler & Hiebert, 1998).

Leadership plays a crucial role in sustaining curriculum reform initiatives. As Gado et al. (2020) note, leadership and strategic innovation are essential in advancing access and equity, particularly in systems transformation. In both Ghana and the United States, the success of mathematics reforms has depended on the capacity of educational leaders to balance innovation with inclusivity, ensuring that new curricula do not exacerbate existing inequalities. This leadership dimension intersects with policy reform, teacher professional development, and community engagement—factors that have been shown to influence the effectiveness of educational change (Darling-Hammond, 2017).

A further dimension shaping the reform landscape is technology integration. Omotayo and Kuponiyi (2020) highlight how post-pandemic shifts toward digital education have opened new frontiers for curriculum delivery. Ghana, in particular, faces the challenge of digital inequity, as many rural schools lack the infrastructure needed to support technology-enhanced learning (Frempong, Ifenatuora & Ofori, 2020).

Conversely, U.S. reforms increasingly leverage artificial intelligence and adaptive learning tools to personalize mathematics instruction, making education more responsive to diverse learner needs. The COVID-19 pandemic underscored the need for flexible, technology-embedded curricula that can adapt to disruptions, an insight relevant to both nations' educational futures (Omotayo & Kuponiyi, 2020).

At the philosophical level, both Ghanaian and American reforms share a constructivist orientation—emphasizing learner-centered approaches, discovery learning, and critical engagement with mathematical concepts (Boaler, 2015). However, differences arise in how these pedagogies are operationalized. In Ghana, teacher capacity remains a bottleneck, as professional development programs often lag behind curriculum innovation (Osei-Senyah, 2019). In contrast, U.S. educators benefit from extensive training and professional learning communities, though issues of curriculum coherence across states persist (Schmidt & Houang, 2012). The emphasis on localized adaptation within a decentralized system creates variability in educational outcomes, a challenge less prominent in Ghana's centralized structure.

Curriculum coherence—the alignment of goals, content, pedagogy, and assessment—has been a recurring concern in both systems (Schmidt & Houang, 2012). While Ghana's curriculum reforms emphasize competency-based outcomes, implementation gaps often arise from limited instructional resources and teacher readiness (Adu-Addae, 2020). In the U.S., coherence challenges stem from variations in state adoption and interpretation of national standards. The interplay between curriculum design and systemic capacity reveals the broader complexities of reform, suggesting that successful change requires not only innovative frameworks but also supportive ecosystems encompassing leadership, teacher empowerment, and technological infrastructure (Gado et al., 2020; Frempong, Ifenatuora & Ofori, 2020).

Emerging global trends further influence these reform trajectories. The growing recognition of interdisciplinary learning, data literacy, and real-world problem-solving has redefined what mathematics

education must achieve (Darling-Hammond, 2017). As nations strive to prepare students for the Fourth Industrial Revolution, mathematics curricula are expected to integrate computational thinking and digital reasoning (Ike et al., 2020). For Ghana, this entails bridging the gap between traditional rote-based learning and innovative, inquiry-driven approaches. For the U.S., it means ensuring that technological integration does not widen achievement gaps but instead promotes equity and inclusion (Stigler & Hiebert, 1998).

Ultimately, the comparative study of Ghana and the United States underscores that mathematics curriculum reform is not merely a technical exercise but a deeply social and political process. It reflects national visions of citizenship, equity, and innovation. In Ghana, the challenge lies in operationalizing an ambitious reform within constrained systemic realities. In the United States, the challenge is sustaining coherence and inclusivity within a decentralized structure. Both nations' experiences offer valuable lessons for global educational policy—demonstrating that effective reform demands contextual awareness, strong leadership, teacher capacity building, and adaptability in the face of emerging global challenges (Aziabah, 2017; NCTM, 2018; Gado et al., 2020).

1.1 Background and Rationale

Mathematics education serves as a cornerstone for intellectual development, scientific advancement, and socio-economic growth in every nation. It provides learners with essential analytical, problem-solving, and reasoning skills that underpin innovation across all sectors of society. Over the decades, nations have recognized the urgent need to reform mathematics curricula to align educational outcomes with rapidly evolving global standards. In both Ghana and the United States, curriculum reforms have emerged in response to shifts in societal expectations, technological advancements, and the growing demand for competencies relevant to the knowledge-driven economy. Ghana's historical reliance on traditional pedagogies has gradually given way to learner-centered approaches that emphasize understanding, creativity, and applicability of mathematical concepts. Similarly, the United States has sought to address

disparities in mathematics achievement through structured and standards-based reforms designed to ensure nationwide consistency and competitiveness. Despite contextual differences, both countries share the underlying goal of producing mathematically literate citizens capable of navigating complex global challenges. The rationale for a comparative study between these two nations lies in the potential to uncover shared insights and contextual distinctions that can inform sustainable educational innovation. Understanding how each country approaches reform—through curriculum design, teacher training, assessment strategies, and technology integration—offers valuable lessons for policymakers and educators globally. Ultimately, this comparison contributes to the discourse on how education systems can adapt to meet the intellectual, economic, and cultural needs of 21st-century learners while reducing learning disparities and fostering equitable access to quality mathematics education.

1.2 Problem Statement and Objectives

Despite continuous efforts to reform mathematics education, significant disparities persist between educational aspirations and actual learning outcomes. In Ghana, recurring challenges such as limited instructional resources, insufficient teacher training, and infrastructural gaps have hindered the effective implementation of new curricula. Students often struggle to transition from rote memorization to conceptual understanding, limiting their ability to apply mathematical knowledge to real-world contexts. Conversely, in the United States, the decentralization of curriculum governance and variation in state-level standards have created inconsistencies in learning experiences and performance outcomes. Both countries continue to grapple with issues of equity, inclusivity, and the need to make mathematics education relevant to the demands of modern society. These challenges raise critical questions about how curriculum design and implementation strategies can be optimized to enhance learning quality and outcomes. The objectives of this study are threefold. First, to analyze the evolution and philosophy underlying mathematics curriculum reforms in both Ghana and the United States. Second, to evaluate the effectiveness of implementation mechanisms, including teacher preparedness, assessment

frameworks, and pedagogical practices. Third, to identify best practices and lessons that can inform future policy development, particularly for nations seeking to balance global educational trends with local contextual realities. By addressing these objectives, the study seeks to provide evidence-based insights into how comparative education research can bridge performance gaps, enhance curriculum coherence, and support the creation of resilient, inclusive, and innovation-oriented mathematics education systems.

1.3 Research Significance and Scope

The significance of this research lies in its contribution to the global discourse on educational reform and curriculum innovation. By examining the mathematics curriculum reforms in Ghana and the United States, the study offers a comparative perspective on how distinct socio-economic, cultural, and policy environments influence the design and delivery of mathematics education. It highlights the interconnectedness of curriculum development, teacher capacity, technological integration, and policy alignment in shaping learning outcomes. For Ghana, insights derived from this analysis can guide the ongoing implementation of the standards-based curriculum, providing evidence to support reforms that promote inquiry-driven and contextually relevant teaching practices. For the United States, the study offers a lens through which the coherence, adaptability, and inclusiveness of existing standards can be reassessed. The findings are also valuable to international organizations, curriculum developers, and educational leaders seeking to foster equity and excellence in mathematics education across diverse settings. The scope of the research encompasses curriculum policies, pedagogical frameworks, assessment mechanisms, and teacher professional development systems within both countries. While it does not undertake a statistical evaluation of student performance, it systematically explores the structural and pedagogical dimensions that underpin curriculum reform success. By situating both nations within the broader context of global educational transformation, this study advances understanding of how mathematics education can be reimagined to cultivate analytical competence, creativity, and lifelong learning skills necessary for participation in an increasingly complex and technology-driven world.

II. CONCEPTUAL AND THEORETICAL FRAMEWORK

The conceptual and theoretical framework of this study provides the intellectual and structural foundation for analyzing mathematics curriculum reforms in Ghana and the United States. It serves as the interpretive lens through which the processes, policies, and pedagogical dynamics of curriculum reform are examined. Conceptually, curriculum reform is understood as a multidimensional process that integrates educational philosophy, instructional design, assessment practices, and sociocultural context. Theoretical perspectives on curriculum development and comparative education help illuminate how differing national priorities and systemic capacities shape mathematics education across both nations.

Curriculum theory has evolved through various paradigms that define how knowledge is selected, organized, and transmitted. Classical theorists such as Taba and Spalding (1962) and Schwab (2013) emphasize a rational, systematic process of curriculum design grounded in philosophical clarity and pedagogical coherence. Taba and Spalding's inductive model, for instance, begins with the identification of learners' needs and proceeds through sequential stages of goal setting, content organization, and evaluation. This theoretical foundation remains relevant to both Ghana and the United States, as it underscores the necessity of aligning curriculum goals with the developmental and cognitive needs of learners. Ghana's recent standards-based curriculum reform reflects this principle by attempting to bridge the gap between curriculum intent and classroom practice through explicit learning outcomes and performance indicators. Similarly, in the United States, the Common Core State Standards exemplify a structured approach that emphasizes coherence, progression, and accountability.

From a conceptual standpoint, the theoretical framework also draws on constructivist and experiential learning theories, as proposed by scholars such as Dewey (1916). These paradigms view learning as an active process in which learners construct knowledge through engagement, discovery, and reflection. In the context of mathematics education, constructivism advocates for problem-based and

inquiry-oriented teaching methods that promote conceptual understanding rather than rote memorization. This perspective is vital in explaining the pedagogical shifts observed in both Ghana and the United States. In Ghana, the movement away from content-heavy syllabi toward competency-based curricula signifies an acknowledgment of the constructivist emphasis on active learning. In the U.S., mathematics reform initiatives have equally prioritized conceptual fluency, reasoning, and application through student-centered pedagogies supported by technological tools.

Comparative education theories further inform this framework by providing analytical tools to understand cross-national similarities and differences. The use of the comparative method allows for the examination of how contextual variables such as governance structures, economic resources, and cultural values influence curriculum outcomes. Ornstein and Hunkins (2018) argue that curriculum reform must be situated within the socio-political ecology of education systems. In Ghana, educational policy is largely centralized, with reforms driven by national agencies seeking to standardize quality and improve access. In contrast, the United States operates within a decentralized educational framework where state and local authorities exercise considerable autonomy. This difference in governance significantly affects curriculum coherence, implementation fidelity, and teacher agency. By comparing these contexts, the framework helps reveal the mechanisms through which national educational visions are translated into classroom realities.

An additional conceptual lens is drawn from systems theory, which views curriculum as part of an interconnected educational ecosystem comprising inputs (policies, teacher education, resources), processes (pedagogy, assessment), and outputs (learning outcomes). Moyo et al. (2021) emphasize the role of transparency and performance monitoring frameworks in optimizing systemic performance. Applied to mathematics education, this perspective underscores the importance of data-driven evaluation in identifying reform successes and shortcomings. Similarly, Akindemwo et al. (2021) highlight the potential of technological frameworks to enhance decision-making through automated data analysis and

feedback loops, principles that align with modern educational accountability systems.

In the current digital age, data analytics and educational technology play transformative roles in curriculum implementation. Eboseren et al. (2021) demonstrate the utility of natural language processing in facilitating research synthesis and policy evaluation—capabilities that can equally be applied to tracking curriculum outcomes. Ghana's gradual integration of digital learning tools and the U.S. emphasis on technology-enhanced pedagogy both reflect a growing reliance on data systems to inform policy refinement and instructional improvement. Furthermore, frameworks such as those proposed by Nnabueze et al. (2021) on visibility and traceability in complex systems resonate with the need for transparency in curriculum reform, where data collection, teacher feedback, and learner assessment must operate within interconnected and accountable structures.

Curriculum theorists such as Kelly (2019) and Eisner (2017) emphasize the balance between prescriptive and descriptive approaches to curriculum development. While prescriptive theories focus on what education should achieve, descriptive theories analyze what is actually implemented. This duality is critical in understanding the reform experiences of Ghana and the United States. Ghana's curriculum reforms are aspirational, targeting the transformation of learning culture and teaching practice. However, their success depends on the descriptive realities of classroom instruction, teacher preparedness, and infrastructural adequacy. In the U.S., where reforms are supported by substantial resources, the descriptive challenge lies in ensuring consistent application across diverse school districts. The theoretical tension between prescription and practice thus forms a key analytical dimension in the comparative framework of this study.

Another integral aspect of this framework is the theory of pedagogical content knowledge (Shulman & Wilson, 2004), which explains how effective teaching requires not only mastery of subject matter but also an understanding of how to make that content comprehensible to learners. This principle is particularly relevant to mathematics education, where

teachers must bridge abstract concepts and practical understanding. The inclusion of teacher education within the theoretical framework highlights the role of human capital in sustaining curriculum reform. Both Ghana and the United States have recognized that the success of mathematics reform hinges on teachers' ability to interpret, adapt, and deliver curriculum objectives in meaningful ways.

Finally, contemporary research in educational management and data systems provides additional layers to this conceptual foundation. As Moyo et al. (2021) and Akindemowo et al. (2021) suggest, frameworks that emphasize transparency, automation, and performance feedback can enhance curriculum accountability and responsiveness. By applying these principles, education systems can better align strategic planning with classroom realities, ensuring that reforms are both evidence-informed and outcome-oriented. In Ghana, where reform evaluation mechanisms are still developing, adopting data-driven frameworks could enhance monitoring and continuous improvement. In the U.S., such frameworks can strengthen coherence across state systems by enabling comparative performance analysis.

2.1 Theoretical Underpinnings of Curriculum Reform

Curriculum reform is grounded in a diverse array of theoretical perspectives that shape its philosophy, structure, and implementation. These theories provide the foundation for understanding how educational systems evolve, adapt, and respond to societal and global transformations. In the context of mathematics education, the theoretical underpinnings of reform are particularly critical because they determine how learners engage with abstract concepts, apply problem-solving skills, and develop critical reasoning abilities. The study of Ghana and the United States offers a valuable comparative platform for exploring how curriculum theories inform national strategies aimed at improving mathematical literacy and equitable access to quality education.

At the core of curriculum reform lies the rational model of curriculum design, championed by early curriculum theorists such as Taba and Spalding (1962) and Schwab (2013). This model proposes a logical, stepwise approach to curriculum development,

beginning with the identification of learning needs, followed by goal formulation, content selection, and evaluation. It assumes that curriculum design is a deliberate, evidence-based process that ensures coherence between educational objectives and learning outcomes. The rationalist approach has profoundly influenced both Ghana's and the United States' curriculum reforms. In Ghana, the National Council for Curriculum and Assessment (NaCCA) adopted a structured framework for its 2019 standards-based curriculum, emphasizing performance indicators and measurable competencies. Similarly, the United States' Common Core State Standards reflect an outcomes-based orientation where mathematical understanding is built through progressive, well-sequenced learning goals.

Complementing this rationalist paradigm is pragmatism, as articulated by Dewey (1916), which provides the philosophical basis for experiential and learner-centered education. Dewey's (1916) emphasis on the interaction between experience and learning introduced a new vision of curriculum reform as a dynamic and adaptive process rather than a fixed body of knowledge. The pragmatic approach encourages active engagement, inquiry, and reflection—principles that underpin modern constructivist theories of mathematics education. In Ghana, this perspective has shaped efforts to move away from rote learning toward problem-based and discovery-driven methodologies. Similarly, in the U.S., pragmatic ideals inform pedagogical reforms that stress conceptual understanding, real-world application, and interdisciplinary learning.

Building on Dewey's philosophy, constructivism—a central theory in contemporary curriculum discourse—posits that learners actively construct knowledge through interaction with their environment (Bruner, 1960). Constructivism challenges traditional didactic approaches by positioning the learner as a co-creator of meaning. This theoretical orientation has guided mathematics reforms in both Ghana and the United States by promoting inquiry-based learning environments, collaborative problem-solving, and the integration of technology to facilitate engagement. Constructivist principles also align with the broader goals of educational equity and inclusion, emphasizing

differentiated instruction to accommodate diverse learner needs.

From a structural standpoint, the technical and systemic theories of curriculum design provide an operational framework for aligning resources, pedagogy, and assessment. Ornstein and Hunkins (2018) argue that curriculum reform must be viewed as a system of interrelated components, each contributing to overall educational effectiveness. This systems-oriented view resonates with the approach taken by Nnabueze et al. (2021), who emphasize visibility, compliance, and traceability across complex operational processes. In educational contexts, such frameworks translate into transparent curriculum management systems that ensure accountability and continuity between policy formulation and classroom practice. In Ghana, adopting a systems perspective is particularly vital for monitoring implementation fidelity and addressing disparities between policy intent and actual teaching practices.

Technological perspectives have also begun to redefine the theoretical underpinnings of curriculum reform. Akindemowo et al. (2021) propose automation and data integration as essential tools for enhancing operational efficiency and evidence-based decision-making. In education, these insights are mirrored in the emergence of data-driven instructional design, where analytics are used to monitor student performance, personalize learning experiences, and refine pedagogical strategies. Similarly, Eboseremen et al. (2021) highlight the use of natural language processing as a transformative tool for analyzing educational data and improving research-informed curriculum decisions. Such digital frameworks have profound implications for curriculum reform in mathematics education, enabling both Ghana and the U.S. to develop adaptive, data-informed learning ecosystems.

The practical orientation of curriculum theory, as advocated by Schwab (2013), further strengthens this discussion by emphasizing the interpretive role of educators in mediating between theory and practice. Schwab asserts that curriculum development is inherently a “deliberative art” requiring contextual judgment rather than mechanical adherence to prescribed models. This perspective underscores the

critical role of teacher agency in curriculum reform, particularly in mathematics education where pedagogy must be continuously adapted to address learner diversity and contextual constraints. In Ghana, empowering teachers as reflective practitioners is a key reform priority, while in the U.S., professional learning communities serve as platforms for collaborative curriculum interpretation and innovation.

Another vital theoretical strand influencing curriculum reform is critical pedagogy, which situates education within the broader discourse of social justice and empowerment. Kelly (2019) and Ornstein and Hunkins (2018) argue that curriculum reform cannot be divorced from questions of equity, inclusion, and cultural relevance. In Ghana, this perspective is evident in the integration of local knowledge systems and contextualized examples in mathematics teaching to make learning more relatable. In the U.S., similar reform efforts address achievement gaps across socio-economic and racial groups by promoting culturally responsive teaching. The critical perspective thus positions curriculum reform as both a pedagogical and moral imperative aimed at democratizing access to quality learning.

In the era of global interdependence, curriculum reform also draws upon complexity theory, which recognizes education systems as dynamic, non-linear, and adaptive (Nnabueze et al., 2021). This theoretical lens views reform as a process of continuous evolution shaped by feedback loops between policy, practice, and technological innovation. In both Ghana and the United States, mathematics curriculum reforms operate within such complex adaptive systems, where stakeholder collaboration, iterative feedback, and contextual flexibility are essential to sustainability. Complexity theory aligns closely with data-driven models (Akindemowo et al., 2021; Eboseremen et al., 2021) that facilitate adaptive management and evidence-based reform.

Finally, the humanistic perspective of education, derived from the works of theorists such as Rogers and Maslow, complements the technical and structural dimensions of curriculum theory. Humanism emphasizes the development of the whole person—intellectually, emotionally, and socially—and seeks to

create learning environments that nurture intrinsic motivation and self-actualization. Within mathematics education, this translates into fostering curiosity, creativity, and resilience. Ghana's standards-based curriculum reflects a humanistic orientation through its emphasis on core values such as respect, responsibility, and collaboration. The U.S. curriculum reforms similarly promote student agency and emotional engagement as key drivers of achievement and lifelong learning.

2.2 Educational Policy Frameworks in Ghana and the United States

Educational policy frameworks define the direction, coherence, and implementation of curriculum reforms by shaping how educational systems respond to societal needs, technological advancements, and global competitiveness. In the cases of Ghana and the United States, these frameworks reflect both shared and divergent philosophies of education, institutional structures, and governance mechanisms. Understanding the policy foundations of mathematics curriculum reform within these two contexts provides critical insight into how educational systems operationalize goals of equity, quality, and relevance.

Ghana's educational policy environment is shaped by a commitment to national development, social inclusion, and global competitiveness. The Ministry of Education, through its agency—the National Council for Curriculum and Assessment (NaCCA), serves as the principal authority responsible for curriculum design and implementation. The 2019 Standards-Based Curriculum (SBC) represents a significant policy milestone aimed at addressing inefficiencies in Ghana's traditional education system (Ampiaw, 2021). It was designed to move beyond rote memorization towards a competency-based approach that promotes critical thinking, creativity, and problem-solving. The SBC aligns with the country's broader policy objectives as articulated in the Education Strategic Plan (2018–2030), which emphasizes the integration of science, technology, engineering, and mathematics (STEM) as a foundation for economic transformation.

The Ghanaian framework emphasizes inclusivity and equity by targeting the improvement of foundational

learning outcomes, particularly in mathematics and literacy. It also underscores teacher professionalism as a critical component of reform success (Akyeampong, 2020). The government's policy recognizes that effective implementation depends on equipping educators with the knowledge and pedagogical tools required to transition from teacher-centered to learner-centered methods. Continuous professional development programs have thus been embedded into the reform agenda to enhance instructional quality and accountability. However, challenges such as limited funding, inadequate instructional resources, and disparities between urban and rural schools remain persistent obstacles to full policy realization.

A unique aspect of Ghana's policy orientation is its attempt to blend global best practices with local educational realities. This hybrid approach ensures that curriculum reform is both contextually grounded and internationally competitive. For example, the introduction of cross-curricular themes—such as digital literacy, citizenship education, and environmental sustainability—reflects global education trends while maintaining alignment with Ghana's socio-economic goals. The policy framework also promotes decentralization of implementation through district-level supervision and community involvement, ensuring that education remains responsive to local needs.

In contrast, the United States operates under a decentralized education policy system in which state governments and local school districts exercise substantial autonomy in curriculum decision-making. Despite this fragmentation, national initiatives such as the Common Core State Standards (CCSS), launched in 2010, have played a pivotal role in establishing coherence and comparability across states (NGA & CCSSO, 2010). The CCSS initiative was developed collaboratively by the National Governors Association and the Council of Chief State School Officers to provide clear and consistent learning goals in mathematics and English language arts. This policy framework represents an attempt to create national benchmarks for student achievement while allowing states flexibility in implementation.

The U.S. policy model emphasizes accountability and performance-based outcomes. Federal legislation such

as the No Child Left Behind Act (2001) and its successor, the Every Student Succeeds Act (2015), established frameworks for assessing and reporting student progress. These acts link educational funding to measurable improvements in learning outcomes, effectively institutionalizing accountability as a policy mechanism. However, critics argue that high-stakes testing has sometimes led to curriculum narrowing, where instructional time is disproportionately allocated to test preparation rather than conceptual learning (Levin, 2014). To counter this, recent policies advocate balanced assessment systems that value both formative and summative evaluations.

Teacher quality remains a central focus in U.S. educational reform. The policy environment places strong emphasis on evidence-based teacher preparation programs and continuous professional development. Darling-Hammond (2017) notes that policies supporting teacher induction, mentorship, and collaborative professional learning communities contribute significantly to improving instructional effectiveness. In mathematics education, this has translated into initiatives that integrate technology, inquiry-based learning, and culturally responsive pedagogy. The federal and state governments have also invested heavily in digital infrastructure and online learning resources, particularly following the disruptions caused by the COVID-19 pandemic.

Comparatively, while both Ghana and the United States emphasize educational quality and equity, their policy frameworks differ markedly in governance structure and resource allocation. Ghana's centralized model allows for coordinated planning and uniform implementation, but it also risks bureaucratic rigidity and slower innovation diffusion. The U.S. model, on the other hand, fosters innovation and contextual adaptation but struggles with disparities arising from decentralized control and unequal funding across districts. These structural contrasts highlight the importance of policy coherence and inter-sectoral collaboration in achieving effective curriculum reform outcomes.

The integration of technology and data analytics into education policy is an emerging trend that links both nations. Yeboah and Ike (2020) emphasize that structured programmatic strategies, similar to those

employed in large-scale industrial systems, can enhance transparency and efficiency in policy implementation. The same principle applies to educational governance, where data-driven decision-making improves accountability and monitoring. Similarly, in Ghana, the adoption of education management information systems (EMIS) exemplifies this digital shift, while in the U.S., state data dashboards support evidence-based policy decisions and resource allocation.

Moreover, lessons from other sectors, such as the agricultural innovations demonstrated by Ofori et al. (2021), underscore the importance of policy integration across disciplines. The use of evidence-based practices, adaptive feedback mechanisms, and continuous improvement cycles—common in environmental and engineering policy—can similarly enhance educational reform processes. The interconnectivity of these frameworks highlights that effective policy in any domain requires alignment between strategic vision, operational capacity, and feedback-driven evaluation.

2.3 Comparative Education Framework

The comparative education framework provides an analytical lens for understanding how different countries approach curriculum reform, particularly in mathematics education. It allows researchers to examine the contextual factors shaping educational policy and practice while identifying cross-national patterns that inform improvement strategies. Comparative education extends beyond description—it seeks to interpret how historical, cultural, and socio-political forces influence educational development in distinct settings. This framework is thus indispensable in evaluating curriculum reform processes in Ghana and the United States, two nations with differing governance structures, resource capacities, and pedagogical traditions but shared aspirations for quality and equity in education.

At its core, comparative education operates on the premise that understanding one educational system requires situating it in relation to others (Bray, Crossley & Watson, 2003). This approach recognizes that while globalization promotes convergence in education standards, such as competency-based

learning and STEM integration, local realities continue to shape how reforms are designed and implemented. In Ghana, the mathematics curriculum reform has been driven by the need to improve basic education quality, strengthen foundational numeracy, and align learning outcomes with national development goals. In contrast, the United States' reforms, particularly through initiatives such as the Common Core State Standards, have emphasized national coherence, accountability, and global competitiveness. Applying a comparative lens enables a systematic exploration of how both countries respond to common challenges—such as teacher quality, curriculum coherence, and learning equity—through distinct institutional pathways.

According to Bray, Adamson, and Mason (2014), comparative education research typically engages three key dimensions: contextualization, comparison, and transfer. Contextualization entails understanding the socio-political and economic environments within which educational systems operate. In Ghana, historical legacies of colonial education, coupled with post-independence development agendas, have significantly shaped current reform trajectories. The U.S. context, by contrast, reflects a decentralized governance model where educational policy is influenced by federal priorities, state-level autonomy, and local community engagement. Comparison involves systematically evaluating these contexts to identify similarities and differences in reform design, pedagogical strategies, and implementation outcomes. Finally, transfer concerns the cautious adaptation of international best practices to local conditions. Both countries have benefited from this principle—Ghana's incorporation of learner-centered and inquiry-based pedagogies, for instance, mirrors global trends observed in the U.S. and other advanced systems, though adapted to its resource environment.

Holmes and Crossley (2000) describe comparative education as a dialectical relationship between the global and the local. This dialectic is particularly evident in mathematics curriculum reform, where global discourses on STEM education, problem-solving, and digital literacy intersect with localized concerns about cultural relevance and accessibility. In Ghana, curriculum frameworks increasingly emphasize contextualized examples that connect

mathematical concepts to real-life applications familiar to learners. Similarly, in the United States, equity-oriented reforms have sought to make mathematics education more inclusive by addressing systemic disparities linked to socio-economic status and ethnicity. The comparative framework thus highlights that while both systems aim for modernization, their pathways to achieving reform are deeply shaped by differing social realities.

Tikly and Barrett (2013) argue that educational quality in the global South must be understood through a social justice lens that accounts for inequality and marginalization. Applying this perspective to Ghana's case underscores how comparative frameworks reveal structural constraints—such as unequal access to qualified teachers, digital tools, and infrastructure—that influence reform outcomes. Conversely, U.S. policies reflect a focus on performance metrics and accountability systems that sometimes obscure issues of educational equity. Comparative analysis therefore provides a balanced perspective that identifies both the strengths and blind spots of each system, enabling the formulation of more inclusive and context-sensitive policy recommendations.

African scholars have contributed significantly to expanding the methodological and philosophical scope of comparative education. Omoregie and Osagie (2020) emphasize that in Sub-Saharan Africa, comparative research must engage with indigenous knowledge systems and local pedagogical traditions rather than simply replicating Western models. Ijoma (2021) similarly highlights that educational reform in the region must prioritize contextual sustainability, ensuring that policies are grounded in local realities and institutional capacities. These insights are crucial for Ghana, where reform sustainability depends on integrating comparative lessons without undermining cultural authenticity. In contrast, the United States serves as an exporter of educational models and practices, yet its decentralized structure often complicates the uniform adoption of reforms even within its own system. Comparative frameworks help illuminate these paradoxes, demonstrating that educational innovation and diffusion are not linear but contextually mediated processes.

Cowen and Kazamias (2018) propose that comparative education should not merely compare systems but also analyze the processes of knowledge transfer, adaptation, and resistance that accompany reform. This is particularly relevant in mathematics education, where the push toward global benchmarking—through assessments such as PISA and TIMSS—has influenced both Ghana's and the U.S.'s curricular priorities. However, while Ghana engages with these frameworks to identify gaps and strengthen foundational learning, the U.S. often uses them to assess competitiveness and policy effectiveness. Comparative frameworks reveal that the interpretation and application of international assessments vary according to national objectives and capacities.

Finally, Broadfoot (2019) reconceptualizes comparative education as a tool for fostering global citizenship, arguing that educational systems must balance local identity with global responsibility. This view resonates strongly in the 21st-century context, where mathematics education is not only about cognitive skill development but also about preparing learners to navigate complex global challenges. The comparative education framework thus provides a multidimensional approach to studying curriculum reform—it captures the interplay between policy, pedagogy, culture, and globalization, offering nuanced insights into how nations like Ghana and the United States pursue excellence through contextually grounded yet globally informed strategies.

III. IMPLEMENTATION OF MATHEMATICS CURRICULUM REFORMS

The implementation of mathematics curriculum reforms represents one of the most critical and complex stages of educational transformation. While curriculum design establishes theoretical intent, its success ultimately depends on how effectively reforms are enacted in classrooms. Both Ghana and the United States offer instructive examples of how educational systems translate reform policies into pedagogical realities. The process involves aligning policy frameworks, teacher preparation, instructional resources, and assessment mechanisms to achieve desired learning outcomes. However, the degree of success in implementation varies across contexts,

reflecting differences in governance, capacity, and socio-economic conditions.

In Ghana, the implementation of the 2019 Standards-Based Curriculum (SBC) marked a significant shift from rote-based instruction to competency-oriented learning. The reform aimed to cultivate critical thinking, creativity, and problem-solving among students. According to Osei-Senyah (2019), the government, through the National Council for Curriculum and Assessment (NaCCA), provided a structured framework to guide teachers in delivering mathematics instruction aligned with the new standards. The curriculum emphasized conceptual understanding and application rather than procedural memorization. Despite its progressive intent, implementation has faced persistent challenges, including limited teacher readiness, inadequate resources, and uneven professional development. Teacher preparation programs have often lagged behind curriculum innovation, creating gaps between policy vision and classroom execution.

Teacher agency and professional competence remain central to reform success. Mensah and Frempong (2019) assert that teachers' beliefs and pedagogical orientations significantly influence how reforms are internalized and enacted. In Ghana, many teachers trained under traditional, teacher-centered models struggle to adopt the learner-centered approaches promoted by the SBC. This tension between reform ideals and pedagogical practice reflects a broader issue across Sub-Saharan Africa, where systemic constraints—such as large class sizes, limited teaching aids, and infrastructural deficits—hinder the full realization of curriculum reforms (Nwosu & Eze, 2021). Furthermore, inconsistent supervision and weak monitoring systems exacerbate implementation challenges, often leading to discrepancies between curriculum documents and actual classroom delivery.

In the United States, implementation dynamics differ due to the nation's decentralized education system. The Common Core State Standards (CCSS) for Mathematics, introduced in 2010, aimed to create nationwide consistency and raise academic standards. However, as Schmidt and Houang (2018) note, the decentralized nature of U.S. education governance has resulted in varied implementation fidelity across

states. While some states have embraced the CCSS as a foundation for coherent instructional planning, others have modified or withdrawn from the initiative due to political and logistical concerns. The result is a patchwork of curriculum practices, reflecting diverse interpretations of national goals at the local level. Nonetheless, where successfully implemented, the CCSS has improved coherence, conceptual progression, and emphasis on mathematical reasoning.

The role of professional development in curriculum implementation cannot be overstated. Darling-Hammond and Hyler (2020) emphasize that sustained, collaborative, and practice-based teacher learning is essential for effective reform. In the U.S., professional learning communities and instructional coaching have been key mechanisms for supporting teachers in adapting to the Common Core. Similarly, Ghana's Ministry of Education has attempted to establish continuous professional development (CPD) structures to strengthen teacher capacity. However, as Osei-Senyah (2019) observes, the frequency, accessibility, and quality of such training remain inconsistent, particularly in rural areas. Without ongoing mentorship and resource support, teachers find it difficult to translate theoretical training into practice.

Curriculum reform implementation is also shaped by the availability and quality of learning materials. Baah-Duodu and Osei-Buabeng (2020) highlight that in Ghana, many mathematics teachers lack sufficient instructional tools and manipulatives to facilitate active learning. The scarcity of textbooks aligned with the new curriculum further complicates lesson planning and assessment. In contrast, U.S. implementation benefited from substantial investment in curriculum-aligned digital and print resources, enabling differentiated instruction and formative assessment. However, even in the U.S., disparities persist, as under-resourced districts face barriers to equitable access to technology and instructional support.

A crucial dimension of implementation lies in the assessment framework used to evaluate student learning. In Ghana, assessment reforms accompanying the SBC seek to integrate formative methods that encourage feedback and reflection. Yet, as Mensah

and Frempong (2019) explain, the dominance of summative testing and examination-oriented culture continues to shape classroom practices. Teachers often prioritize test preparation over conceptual exploration. Conversely, in the U.S., the CCSS has introduced performance-based assessments that measure higher-order thinking. While this shift promotes deeper learning, it has also sparked debates about test validity, equity, and the administrative burden placed on educators (Schmidt & Houang, 2018).

Comparative perspectives from Nigeria further illuminate the broader African experience of mathematics reform. Adebisi and Oladipo (2021) report that, similar to Ghana, Nigerian reforms emphasize STEM integration and learner-centered pedagogies but face implementation bottlenecks due to insufficient teacher training and inadequate infrastructure. Nwosu and Eze (2021) argue that regional collaboration among African education systems could foster the sharing of best practices and create unified strategies for teacher capacity building. This perspective aligns with global calls for South-South cooperation in education reform.

3.1 Ghana's Curriculum Reform Journey

Ghana's curriculum reform journey represents a continuous process of educational transformation aimed at improving learning outcomes, aligning with global standards, and addressing historical and systemic challenges. Since its independence in 1957, Ghana's education system has undergone multiple reforms, reflecting both national aspirations and international influences. The development of mathematics education within these reforms demonstrates the country's evolving commitment to cultivating critical, analytical, and problem-solving competencies necessary for technological and economic progress. The trajectory of curriculum reform in Ghana underscores the intricate relationship between policy, pedagogy, and national development.

The first post-independence education reforms, initiated in the early 1960s, sought to reorient the curriculum from colonial content toward locally relevant knowledge and practical skills. As Mereku (2010) notes, early mathematics curricula were heavily influenced by British educational models,

emphasizing procedural knowledge and abstract reasoning. However, Ghana's participation in the African Mathematics Programme, led by the School Mathematics Project in the 1960s, marked a turning point by introducing modern mathematics approaches. These innovations were designed to integrate abstract algebra, geometry, and set theory into basic education, reflecting global shifts in mathematical pedagogy. Despite their visionary outlook, these early reforms encountered implementation challenges, particularly due to limited teacher preparedness and inadequate instructional materials, leading to a gradual return to more traditional approaches by the late 1970s.

By the late 1980s and 1990s, Ghana embarked on another wave of educational reforms aimed at expanding access and improving quality. The 1987 Education Reform Programme, guided by the Evans-Anfom Committee Report, restructured basic education and placed renewed emphasis on numeracy and literacy as foundational competencies. According to Apau (2021) this reform introduced a nine-year basic education framework intended to make learning more relevant to national development needs. Mathematics remained central, but the curriculum still prioritized content mastery over conceptual understanding. This approach, while improving examination performance, failed to foster deep learning or creativity among students. Consequently, the subsequent 2007 and 2010 revisions introduced competency-based principles, marking a gradual shift toward learner-centered pedagogy.

The most transformative reform to date is the 2019 Standards-Based Curriculum (SBC), which represents Ghana's deliberate move toward competency-oriented education. The SBC was designed to bridge the gap between theory and practice by promoting critical thinking, problem-solving, creativity, and digital literacy. Agbozo, Bonyah, and Clark (2021) argue that this reform reflects Ghana's recognition of the need to decolonize its curriculum by integrating culturally relevant mathematical contexts and emphasizing the historical development of mathematical concepts. This paradigm shift aligns with Amponsah-Efah's (2021) critique of the persistent colonial structures in Ghanaian education, which have historically prioritized Western epistemologies over indigenous knowledge systems. The SBC therefore signifies not

only pedagogical modernization but also epistemic liberation.

Teacher education has been a focal point in Ghana's curriculum reform efforts. The introduction of the National Teacher Education Curriculum Framework (NTECF) in 2018 was aimed at enhancing the professional competence of educators to meet the pedagogical demands of the new curriculum. This reform sought to move teacher training beyond content transmission to incorporate reflective practice, inquiry-based learning, and technology integration. The inclusion of continuous professional development (CPD) programs and teaching practicum reforms has also been pivotal in strengthening the connection between theory and classroom practice. However, as David-West, Iheanachor, and Umukoro(2019)note, the success of such initiatives remains contingent on sustained government investment and institutional support, particularly in rural and resource-constrained regions.

A major theme emerging from Ghana's curriculum reform journey is the balance between global influence and local relevance. The influence of the U.S. and U.K. models of mathematics reform is evident in Ghana's emphasis on learner-centered approaches and assessment reforms. However, as Merekuru (2010) observes, such models often require adaptation to Ghana's socio-cultural and economic realities. The SBC's focus on problem-solving and critical reasoning, for example, mirrors international standards but has been localized through the inclusion of real-world Ghanaian contexts and examples that make learning more relatable and meaningful. This dual orientation—global benchmarking and local contextualization—has become a defining feature of Ghana's educational modernization strategy.

Despite the policy sophistication of recent reforms, challenges persist in implementation and sustainability. Limited resources, large class sizes, and uneven teacher distribution continue to impede effective curriculum delivery. David-West, Iheanachor, and Umukoro (2019) emphasize that reform fatigue among teachers and inadequate instructional materials undermine motivation and pedagogical innovation. Furthermore, assessment practices remain largely examination-driven, which

sometimes conflicts with the inquiry-based learning ethos of the SBC. The absence of a robust monitoring and evaluation framework compounds these issues, as schools struggle to translate curriculum objectives into measurable learning outcomes.

Comparative perspectives from other African nations, such as Uganda and Nigeria, offer valuable insights into Ghana's experience. Ndungo and Akugizibwe (2021) note that regional efforts to improve mathematics education increasingly emphasize contextualized pedagogies, integration of technology, and capacity-building for teachers—principles consistent with Ghana's reform direction. Similarly, Balogun, (2020) findings from Nigeria highlight the need for stronger teacher support systems and policy coherence in sustaining curriculum change. Ghana's progress, therefore, must be understood as part of a broader continental movement toward educational renewal driven by local innovation and global alignment.

3.2 The United States' Curriculum Evolution

The evolution of the United States' mathematics curriculum reflects a century-long journey of adaptation to societal change, scientific advancement, and economic competition. From the early 20th century's progressive education movements to the contemporary Common Core State Standards (CCSS), the nation's educational policies have continually evolved to balance national unity, local autonomy, and global competitiveness. The U.S. curriculum trajectory exemplifies how educational reform intertwines with political ideology, economic priorities, and cultural identity, shaping both the content and delivery of mathematics education.

In the early 1900s, American education emphasized practical mathematics, influenced by industrialization and the need for a skilled workforce. Mathematics was taught as an applied discipline, rooted in efficiency and measurable productivity. This orientation shifted dramatically during the mid-20th century with the rise of the "New Math" movement in the 1950s and 1960s, which sought to modernize curriculum content by incorporating abstract concepts such as set theory and symbolic logic (DeBoer, 2020). Spurred by the Cold War and the launch of Sputnik in 1957, the movement

represented an effort to elevate mathematical literacy as a national priority. However, by the 1970s, widespread criticism emerged as educators and parents argued that the abstractness of New Math alienated students and teachers. This disillusionment led to the "Back-to-Basics" movement, emphasizing procedural fluency and fundamental computation over theoretical abstraction.

The late 20th century marked a renewed focus on standards-based reform, culminating in the National Council of Teachers of Mathematics (NCTM) Standards of 1989. These standards established a unified vision for mathematics education, emphasizing problem-solving, reasoning, and real-world application. As Kirst (2020) observes, this was the first time the U.S. attempted to nationalize curricular expectations without compromising state autonomy. The NCTM Standards laid the groundwork for the later Common Core State Standards (CCSS), which were formally introduced in 2010. The CCSS aimed to ensure coherence, consistency, and competitiveness by providing clear learning trajectories from kindergarten through high school. They reflected a national consensus that American students needed stronger conceptual understanding and higher-order thinking skills to succeed in a globalized economy (Shaw & Rushton, 2020).

The implementation of the CCSS marked a critical juncture in U.S. curriculum evolution. According to Desimone (2013), the Common Core represented both continuity and disruption—continuity in its standards-based lineage and disruption in its challenge to local control. While 46 states initially adopted the standards, variations in political commitment and resource allocation led to divergent implementation outcomes. The standards emphasized mathematical practices such as problem-solving, reasoning, and modeling, moving away from rote learning. However, critics argued that excessive testing and uneven teacher preparation undermined the reform's transformative potential. As Gökçe and Güner (2021) highlight, this tension illustrates a recurring theme in U.S. curriculum history: the struggle to align national educational ambitions with local realities.

Parallel to these policy developments, pedagogical paradigms in U.S. mathematics education have shifted

toward inclusivity, technology integration, and equity. DeBoer (2020) and Shaw and Rushton (2020) emphasize that modern curriculum reform increasingly seeks to address the systemic inequities that have historically marginalized minority and low-income students. Initiatives such as culturally responsive teaching and project-based learning are reshaping instructional practices to make mathematics more accessible and meaningful. The evolution also reflects a broader societal recognition of diversity as a strength, aligning curriculum reform with civil rights and social justice movements.

Comparative insights from Africa underscore the global resonance of the U.S. experience. Adebayo and Okon (2021) observe that many African nations, including Nigeria and Ghana, have drawn lessons from U.S. curriculum frameworks, particularly in developing outcome-based education and competency-driven learning systems. However, they caution against wholesale adoption, emphasizing the need for contextual adaptation. This mirrors debates within the U.S., where critics warn against over-standardization that limits local innovation and teacher autonomy. The dialogue between global and local forces continues to shape the curriculum's direction, as reformers strive to balance coherence with flexibility.

Throughout its evolution, the U.S. mathematics curriculum has oscillated between centralization and decentralization, innovation and tradition. The federal government's growing involvement in education—through initiatives like No Child Left Behind (2001) and Every Student Succeeds Act (2015)—reflects an increasing recognition of education as a national economic and social imperative. Yet, as DeBoer (2020) notes, such involvement has also deepened debates about accountability and pedagogy, highlighting the delicate balance between standardization and creativity. The challenge lies not only in defining what students should learn but also in empowering teachers to implement reforms in ways that inspire curiosity and understanding.

Ultimately, the U.S. curriculum evolution represents an ongoing negotiation between ideals of excellence, equity, and autonomy. From the New Math era to the Common Core, each reform wave has sought to

redefine mathematics education's purpose in an ever-changing society. As Desimone (2013), asserts, the nation's curricular journey reflects its broader democratic ethos—a constant striving for improvement through dialogue, diversity, and innovation. The lessons of this evolution continue to resonate globally, offering valuable insights into the enduring interplay between policy, pedagogy, and progress.

IV. COMPARATIVE ANALYSIS AND LESSONS LEARNED

The comparative analysis of mathematics curriculum reforms in Ghana and the United States reveals both convergences and divergences in how each nation has pursued educational transformation. While both countries aim to enhance student learning outcomes, promote critical thinking, and prepare learners for global competitiveness, their reform strategies have been shaped by differing socio-economic contexts, governance structures, and historical legacies. This comparative perspective allows for a deeper understanding of how global educational frameworks can be adapted to national realities, and what lessons can be drawn from their successes and limitations.

In both Ghana and the United States, the overarching goal of curriculum reform has been to shift from content-heavy instruction to competency-based, student-centered learning. However, the path to achieving this transformation has differed markedly. Ghana's 2019 Standards-Based Curriculum (SBC) reflects a national drive to bridge the gap between theoretical knowledge and practical application, fostering critical thinking and problem-solving abilities (Tchombe, 2020). The reform was influenced by international educational standards but adapted to address local challenges such as limited teacher resources and uneven access to educational materials. Conversely, in the United States, reforms like the Common Core State Standards (CCSS) were designed to standardize learning outcomes across states while maintaining flexibility in implementation. Schmidt and Burroughs (2016) emphasize that curriculum coherence, a key feature of the CCSS, has been instrumental in improving conceptual understanding, although its effectiveness varies depending on state-level adoption and teacher preparedness.

A major point of comparison lies in the governance and policy environments that underpin these reforms. Ghana's centralized education system allows for unified curriculum planning and nationwide implementation, ensuring consistency across schools. However, as Akyeampong (2017) observes, this structure also risks bureaucratic rigidity, with limited opportunities for local adaptation and innovation. In contrast, the decentralized governance model of the U.S. education system promotes flexibility and diversity but often leads to disparities in resource distribution and instructional quality. This contrast highlights the enduring tension between uniformity and autonomy in curriculum reform—where Ghana's approach ensures coherence but struggles with responsiveness, and the U.S. model fosters innovation but lacks nationwide consistency.

Teacher preparation and professional development emerge as another critical area of divergence. Both countries recognize that effective reform depends on teacher capacity to translate curriculum goals into classroom practice. Ghana's reforms have included efforts to strengthen teacher education through the National Teacher Education Curriculum Framework (NTECF), yet implementation gaps persist due to limited funding and inadequate professional support. In the U.S., by contrast, there is a long-standing tradition of linking curriculum reform with teacher development initiatives. Darling-Hammond and Oakes (2019) note that professional learning communities and ongoing mentorship programs have been central to sustaining reform momentum and ensuring that teachers engage deeply with pedagogical change. Nonetheless, inequities in access to professional development, particularly in low-income districts, remain a persistent challenge.

Cultural relevance is another crucial dimension shaping curriculum reform outcomes. Ghana's education system has made strides in integrating local knowledge systems and contextual examples within mathematics instruction to enhance learner engagement (Tchombe, 2020). This aligns with calls for decolonizing education and promoting curricula that reflect indigenous values and experiences. In contrast, the U.S. has grappled with cultural inclusivity from a different standpoint—seeking to address racial and socio-economic disparities in

learning outcomes. Efforts such as culturally responsive pedagogy and equity-focused reforms aim to make mathematics education accessible to all learners, yet systemic inequities continue to hinder progress. The Ghanaian model's focus on localization and the U.S. model's emphasis on inclusion both underscore the importance of aligning curriculum content with the lived experiences of learners.

From a policy learning perspective, the experiences of Ghana and the U.S. highlight the significance of context-sensitive innovation. Adeyemi (2020\1) argues that policy borrowing without contextual adaptation often leads to superficial reform outcomes. Ghana's attempt to integrate global competency-based frameworks demonstrates the potential of localized innovation, but it also illustrates the need for sustained capacity-building to avoid dependence on external models. Similarly, the U.S. experience reveals that large-scale reforms, while ambitious, require consistent stakeholder engagement and political commitment to succeed (Fullan, 2018). Fullan's notion of "nuance" in educational change underscores that successful reform is not merely about designing policies but about fostering a culture of continuous improvement and collaboration.

A comparative examination also reveals shared challenges in curriculum assessment and accountability. In both contexts, the tension between formative and summative assessment approaches has shaped reform outcomes. Ghana's SBC encourages continuous assessment, yet high-stakes testing remains dominant, often constraining pedagogical innovation. The U.S. faces a similar dilemma, as standardized testing has been both a driver and an impediment to reform. While assessments provide accountability and data for improvement, they also risk narrowing the curriculum and promoting teaching to the test (Schmidt & Burroughs, 2016). These shared experiences suggest that effective reform requires balancing accountability mechanisms with pedagogical flexibility.

The lessons learned from both systems point toward the necessity of adopting a holistic, adaptive approach to curriculum reform. Tchombe (2020) emphasizes that successful reforms are those that integrate policy coherence, teacher empowerment, cultural relevance,

and stakeholder participation. Ghana's journey underscores the importance of local ownership and contextualization, while the U.S. experience demonstrates the value of evidence-based policymaking and decentralized innovation. Akyeampong (2017) further notes that reflective practice—where educators continuously assess and adapt their methods—is essential for sustaining reform gains in dynamic educational environments.

4.1 Key Similarities and Differences

Comparative studies between Ghana and the United States reveal intricate intersections and divergences in mathematics curriculum reforms, particularly in their philosophical underpinnings, implementation frameworks, and pedagogical orientations. Both nations have engaged in multiple waves of reform to enhance mathematical literacy, reflecting broader global education trends that emphasize problem-solving, critical thinking, and competency-based learning (Romberg, 1997; Wang & Lin, 2005). However, while the United States has largely framed its curriculum evolution around accountability and measurable standards, Ghana's reforms have been driven by post-colonial nation-building imperatives and the need to balance local relevance with international competitiveness (Agbemabiese, 2007; Quainoo, Quansah & Adams, 2020).

One of the most prominent similarities lies in both countries' prioritization of mathematics as a tool for national development and as a foundational discipline for science and technology (Murray & Allotey, 2021). In the United States, the introduction of the Common Core State Standards for Mathematics (CCSSM) exemplifies a drive toward coherence and depth in mathematical understanding (Romberg, 1997). Similarly, Ghana's 2007 and 2019 curriculum revisions reflect efforts to move from rote learning to inquiry-based mathematics education that promotes analytical reasoning and application in real-world contexts (Kumi & Seidu, 2017). Both frameworks thus aim to develop problem solvers equipped to participate effectively in modern economies.

Despite these shared objectives, there are profound differences in structural and contextual realities that shape outcomes. The United States benefits from

extensive research infrastructure, resource availability, and data-driven assessment practices that enable continuous refinement of curricular approaches (Wang & Lin, 2005). In contrast, Ghana faces implementation challenges stemming from limited teacher training opportunities, inadequate instructional materials, and infrastructural deficits, which often dilute the intended outcomes of reform (Quainoo, Quansah & Adams, 2020). Furthermore, while U.S. reform efforts such as No Child Left Behind and Every Student Succeeds Act emphasize equity through performance monitoring, Ghana's reforms are more concerned with expanding access and improving teacher effectiveness in rural and underserved communities (Murray & Allotey, 2021).

Cultural factors also differentiate the two systems. The U.S. education model places substantial emphasis on individualism and learner autonomy, while Ghana's system, though evolving, remains shaped by collectivist and hierarchical traditions where authority and conformity influence pedagogy (Agbemabiese, 2007). Consequently, classroom dynamics differ significantly—U.S. mathematics instruction typically encourages student inquiry, argumentation, and collaboration, whereas Ghanaian classrooms often rely on direct instruction and teacher-led demonstrations (Murray & Allotey, 2021). These contrasts reflect broader sociocultural paradigms about the nature of knowledge and learning.

Teacher education and professional development mark another point of divergence. In the U.S., teacher preparation programs are typically housed in universities and incorporate research-based pedagogical models, emphasizing reflective practice and assessment literacy (Clarke, 2011). Ghana, however, continues to rely heavily on centralized teacher colleges, many of which have struggled to integrate contemporary mathematical pedagogies into their curricula due to resource limitations (Kumi & Seidu, 2017). This structural difference influences both the quality and adaptability of mathematics instruction.

Nevertheless, cross-national analyses also reveal emerging areas of convergence. Both countries are increasingly embracing digital tools and learner-centered strategies to foster engagement and

conceptual understanding in mathematics. In Ghana, the incorporation of ICT-based mathematics instruction is gradually expanding, often supported by international collaborations and donor-funded initiatives (Murray & Allotey, 2021). Similarly, the United States continues to integrate technology-enhanced learning platforms and adaptive assessment systems that personalize mathematical learning experiences (Wang & Lin, 2005). These developments signal a global trend toward the digitalization of mathematics education as a means of enhancing inclusivity and learning outcomes.

In terms of assessment, Ghana has traditionally emphasized summative evaluations through standardized national examinations, which often prioritize recall over application. Conversely, U.S. systems employ a balance of formative and summative assessments, emphasizing analytical reasoning and procedural fluency (Romberg, 1997). This difference underscores varying policy priorities: while Ghana seeks to improve minimum competency levels nationally, the U.S. focuses on differentiation and accountability at local and state levels.

Ultimately, the comparative exploration reveals that both nations are moving toward a shared vision of mathematics education that promotes creativity, reasoning, and lifelong learning. However, the pace and depth of reform remain contingent on systemic capacity, teacher competence, and socio-economic factors. For Ghana, lessons from the United States highlight the importance of sustained teacher professionalization and decentralization in curriculum design. Conversely, Ghana's emphasis on contextual and culturally responsive pedagogy offers valuable insights for U.S. educators seeking to improve equity and relevance in diverse learning environments (Agbemabiese, 2007; Clarke, 2011).

CONCLUSION

The study has provided a detailed and comparative exploration of mathematics curriculum reforms across two distinct educational landscapes, offering critical insights into how systemic, cultural, and pedagogical factors shape reform outcomes. The research effectively met its aims and objectives by examining the evolution, implementation, and theoretical

underpinnings of curriculum reform within both Ghana and the United States. Through this comparative analysis, the study has illuminated the multifaceted nature of curriculum transformation, revealing the complex interplay between global educational trends and local contextual realities.

A key finding highlights that both nations share a common aspiration to transform mathematics education into a tool for critical thinking, innovation, and societal development. However, differences emerge in the structural and operational contexts that define reform success. The United States demonstrates a strong emphasis on standardization, accountability, and pedagogical innovation supported by extensive resources and data-driven evaluation systems. In contrast, Ghana's reforms are rooted in a quest for relevance, access, and quality, often challenged by infrastructural limitations, teacher capacity gaps, and contextual constraints. Despite these differences, both systems converge on the need to foster student-centered learning and to align mathematical instruction with contemporary global competencies.

The findings also underscore the significance of teacher preparation, continuous professional development, and assessment reform as core drivers of effective implementation. The comparative perspective reveals that meaningful reform transcends curriculum design; it depends on adaptive leadership, stakeholder collaboration, and cultural responsiveness.

In light of these insights, the study recommends sustained investment in teacher education, targeted policy interventions to enhance curriculum coherence, and the integration of technology to bridge instructional disparities. Furthermore, it advocates for reflective, evidence-based approaches to curriculum monitoring and evaluation. By synthesizing lessons from both contexts, the study contributes to the broader discourse on educational reform, providing a roadmap for policymakers and educators seeking to balance global excellence with local authenticity in mathematics education transformation.

REFERENCES

[1] Adebayo, O.K. (2021). Implementation of Universal Basic Education Program in the North-

Central Region of Nigeria (Doctoral dissertation, Walden University).<https://search.proquest.com/openview/w6867a5b7b833858459862c1bd540f21e1?pq-origsite=gscholar&cbl=18750&diss=y>

[2] Adeyemi, S.O., (2021). Effect of Entrepreneurial Development on Job Creation among Undergraduate Students in Selected Universities in Ogun State, Nigeria (Doctoral dissertation, Kwara State University (Nigeria)).<https://search.proquest.com/openview/c38e92e5d8fb47f41545a653e899fe70/1?pq-origsite=gscholar&cbl=2026366&diss=y>

[3] Adu-Addae, G.I.F.T.Y. (2020). The influence of student-centred teaching methods on the academic performance of students of Afua Kobi Ampem Girls Senior High School (Doctoral dissertation, University of Education, Winneba).<https://ir.uew.edu.gh/handle/123456789/1539>

[4] Agbemabiese, P.G.E. (2007). Emerging themes in educational reforms in Ghana, as seen through education reforms in the United States. The Ohio State University. Available at: https://rave.ohiolink.edu/etdc/view?acc_num=osu1173366013

[5] Agbozo, K.K., Bonyah, E., and Clark, L.J. (2021). Changes in the Ghanaian schools' mathematics curriculum: Exploring the need to raise awareness in the integration of the history of mathematical concepts. *Education and Information Technologies*, 26(2), 145–163. <https://doi.org/10.35745/eit2024v04.01.0001>

[6] Akindemowo, A.O., Erigha, E.D., Obuse, E., Ajayi, J.O., Adebayo, A., Afuwape, A.A., and Adanyin, A. (2021). A Conceptual Framework for Automating Data Pipelines Using ELT Tools in Cloud-Native Environments. *Journal of Frontiers in Multidisciplinary Research*, 2(1), 440–452. <https://doi.org/10.54660/JFMR.2021.2.1.440-452>

[7] Akyeampong, K. (2017). Teacher educators' practice and vision of good teaching in the teacher education reform context in Ghana. *Educational researcher*, 46(4), pp.194–203.<https://doi.org/10.3102/0013189X17711907>

[8] Ampiaw, F.R.A.N.C.I.S.C.A., (2021). The impact of government educational expenditure on economic growth in Ghana.<https://ir.uew.edu.gh/handle/123456789/4326>

[9] Amponsah-Efah, I. (2021). Pedagogy of English and mathematics teachers in middle to high fee-paying private schools in Ashanti Region in Ghana (Doctoral dissertation, University of Sussex).

[10] Apau, S.K. (2021). Teachers' Concerns about the Implementation of the Standard-Based Curriculum in Ghana: A Case Study of Effutu Municipality. *Educational Research and Reviews*, 16(5), pp.202–211.<https://eric.ed.gov/?id=EJ1296933>

[11] Aziabah, M.A. (2017). The politics of educational reform in Ghana. Educational policy change and the persistence of academic bias in Ghana's secondary education system.<https://link.springer.com/content/pdf/10.1007/978-3-319-93761-8.pdf>

[12] Baah-Duodu, S. and Osei-Buabeng, V. (2020). Review of literature on teaching and learning geometry and measurement: a case of Ghanaian standards-based mathematics curriculum. *International Journal of Advances in Scientific Research and Engineering*, 6(3), 1–11. <https://doi.org/10.31695/IJASRE.2020.33766>

[13] Balogun, J.A. (2020). Healthcare education in Nigeria: Evolutions and emerging paradigms. Routledge.<https://doi.org/10.4324/9781003127529>

[14] Boaler, J. (2015). Mathematical mindsets: Unleashing students' potential through creative math, inspiring messages, and innovative teaching. John Wiley & Sons.

[15] Bray, M., Adamson, B. and Mason, M. (2014). Comparative Education Research: Approaches and Methods. 2nd ed. Hong Kong: Springer. <https://doi.org/10.1007/978-94-007-5836-0>

[16] Bray, M., Crossley, M. and Watson, K., (2003). Comparative and international research in education: Globalisation, context and difference. Routledge.<https://doi.org/10.4324/9780203452745>

[17] Broadfoot, P. (2019). Comparative education for global citizenship: Reinterpreting the field for contemporary challenges. *Oxford Review of Education*, 45(6), 724–741.

[18] Bruner, J.S. (1960). *The Process of Education*. Harvard University Press, Cambridge, MA.

[19] Clarke, D. (2011). International comparative research in mathematics education. Springer. Available at: https://link.springer.com/chapter/10.1007/978-94-010-0273-8_6

[20] Cowen, R. and Kazamias, A.M. (2018). *International Handbook of Comparative Education*. Springer International. <https://doi.org/10.1007/978-1-4020-6403-6>

[21] Darling-Hammond, L. (2017). Teacher education around the world: What can we learn from international practice? *European Journal of Teacher Education*, 40(3), 291–309. <https://doi.org/10.1080/02619768.2017.1315399>

[22] Darling-Hammond, L. and Hyler, M.E. (2020). Preparing educators for the time of COVID... and beyond. *European Journal of Teacher Education*, 43(4), pp.457-465.

[23] Darling-Hammond, L. and Hyler, M.E. (2020). Preparing educators for the time of COVID... and beyond. *European Journal of Teacher Education*, 43(4), pp.457-465. <https://doi.org/10.1080/02619768.2020.1816961>

[24] David-West, O., Iheanachor, N. and Umukoro, I.O., (2019). Mobile money as a frugal innovation for the bottom of the pyramid—Cases of selected African countries. *Africa Journal of Management*, 5(3), pp.274-302. <https://doi.org/10.1080/23322373.2019.1652023>

[25] DeBoer, G.E. (2020). The use of content standards for curriculum reform in the United States: A historical analysis. In *The Handbook of Research on Science Education* (Vol. 2, pp. 451–470). Routledge. <https://doi.org/10.4324/9780367855758-31>

[26] Desimone, L.M. (2013). Teacher and administrator responses to standards-based reform. *Teachers College Record*, 115(8), pp.1-53. <https://doi.org/10.1177/016146811311500805>

[27] Dewey, J. (1916). Democracy and education. An introduction to the philosophy of education (1966 ed.).

[28] Eboserenem, B., Adebayo, A., Essien, I., Afuwape, A., Soneye, O., and Ofori, S. (2021). The Role of Natural Language Processing in Data-Driven Research Analysis. *International Journal of Multidisciplinary Research and Growth Evaluation*, 2(1), 935–942.

[29] Eisner, E.W. (2017). *The Educational Imagination: On the Design and Evaluation of School Programs*. 4th ed. Pearson, New York. <https://cir.nii.ac.jp/crid/1130282270120080256>

[30] Frempong, D., Ifenatuora, G.P., and Ofori, S.D. (2020). AI-powered chatbots for education delivery in remote and underserved regions. *International Journal of Fundamental and Multidisciplinary Research*, 1(1), 156–172. <https://doi.org/10.54660/IJFMR.2020.1.1.156-172>

[31] Fullan, M. (2018). *Nuance: Why some leaders succeed, and others fail*. Corwin Press.

[32] Gado, P., Gbaraba, S.V., Adeleke, A.S., Anthony, P., Ezeh, F.E., Tafirenyika, S., and Moyo, T.M. (2020). Leadership and strategic innovation in healthcare: lessons for advancing access and equity. *International Journal of Multidisciplinary Research Growth Evaluation*, 1(4), 147–165.

[33] Gökçe, S. and Güner, P., (2021). Forty Years of Mathematics Education: 1980-2019. *International Journal of Education in Mathematics, Science and Technology*, 9(3), pp.514-539. <https://eric.ed.gov/?id=EJ1307838>

[34] Holmes, K. and Crossley, M. (2000). Comparative Education: The Dialectic of the Global and the Local. <https://www.jstor.org/stable/3445265>

[35] Ijoma, U., (2021). Promoting Sustainable Development in Nigeria through Rural Women's Participation in Decision-Making about Renewable Energy Law and Policy (Doctoral dissertation, Université d'Ottawa/University of Ottawa). <http://hdl.handle.net/10393/41865> <http://dx.doi.org/10.20381/ruor-26087>

[36] Ike, P.N., Aifuwa, S.E., Nnabueze, S.B., Olatunde-Thorpe, J., Ogbuefi, E., Oshoba, T.O., and Akokodaripon, D. (2020). Utilizing Nanomaterials in Healthcare Supply Chain Management for Improved Drug Delivery Systems. *Medicine*, 12, 13. <https://doi.org/10.62225/2583049X.2024.4.4.5154>

- [37] Kelly, A.V. (2019). The Curriculum: Theory and Practice. 8th ed. Sage Publications, London.
- [38] Kirst, M.W. (2020). Standards-based education reforms: Looking back to look forward. ERIC Document ED671010. <https://files.eric.ed.gov/fulltext/ED671010.pdf>
- [39] Kumi, A.M. and Seidu, A.A. (2017). Comparative Review of Selected Educational Policies of 1st and 2nd Cycle Institutions in Ghana and Burkina Faso, and That of the United Kingdom and the United States. *African Journal of Education Studies in Mathematics and Sciences*, 13(1). Available at: <https://files.eric.ed.gov/fulltext/EJ1137987.pdf>
- [40] Levin, B., (2014). Governments and education reform: some lessons from the last 50 years. In *Education, Capitalism and the Global Crisis* (pp. 39-47). Routledge.
- [41] Mensah, F. and Frempong, D. (2019). Teacher beliefs, classroom practice, and curriculum reform outcomes in Ghanaian mathematics education. *International Journal of Educational Development*, 69, 102–116. <https://doi.org/10.1016/j.ijedudev.2019.05.009>
- [42] Mereku, D.K. (2010). Five decades of school mathematics in Ghana.
- [43] Moyo, T.M., Taiwo, A.E., Ajayi, A.E., Tafirenyika, S., Tuboalabo, A., and Bukhari, T.T. (2021). Designing Smart BI Platforms for Government Healthcare Funding Transparency and Operational Performance Improvement. *International Journal of Multidisciplinary Engineering Research*, 2(2), 41–51. <https://doi.org/10.54660/IJMER.2021.2.2.41-51>
- [44] Murray, S. and Allotey, P. (2021). Primary Mathematics Pedagogy at the Intersection of Education Reform, Policy, and Culture: Comparative Insights from Ghana, Singapore, and the US. Routledge. DOI: <https://doi.org/10.4324/9781003172468>
- [45] National Governors Association Center for Best Practices and Council of Chief State School Officers (NGA & CCSSO) (2010). Common Core State Standards for Mathematics. Washington, DC.
- [46] NCTM (2018). Catalyzing Change in High School Mathematics: Initiating Critical Conversations. Reston, VA: National Council of Teachers of Mathematics.
- [47] Ndungo, I. and Akugizibwe, E. (2021). Analyzing trends and suggested instructional strategies for mathematics education in Africa: Lessons from Uganda. *African Journal of Teacher Education*, 10(2), 33–48. <https://doi.org/10.21083/ajote.v13i2.8106>
- [48] Nnabueze, S.B., Ike, P.N., Olatunde-Thorpe, J., Aifuwa, S.E., Oshoba, T.O., Ogbuefi, E., and Akokodaripon, D. (2021). End-to-End Visibility Frameworks Improving Transparency, Compliance, and Traceability Across Complex Global Supply Chain Operations. <https://doi.org/10.54660/IJMFD.2021.2.2.50-60>
- [49] Nwosu, E.O. and Eze, C.O. (2021). Implementing STEM-driven mathematics curriculum reforms in Sub-Saharan Africa: Constraints and opportunities. *Journal of Education and Practice in Africa*, 8(4), 65–80.
- [50] Ofori, P., Asamoah, G., Amoah, B., Agyeman, K.O.A., and Yeboah, E. (2021). Combined application of poultry litter biochar and NPK fertilizer improves cabbage yield and soil chemical properties. *Open Agriculture*, 6(1), 356–368. <https://doi.org/10.1515/opag-2021-0030>
- [51] Omorogie, N. and Osagie, R.O. (2020). Comparative education and development in Africa: The quest for quality reforms. *African Journal of Education and Practice*, 6(4), 56–71.
- [52] Omotayo, O.O.A. and Kuponiyi, A.B. (2020). Telehealth expansion in post-COVID healthcare systems: challenges and opportunities. *ICONIC Research and Engineering Journals*, 3(10), 496–513.
- [53] Ornstein, A.C. and Hunkins, F.P. (2018). Curriculum: Foundations, Principles, and Issues. 8th ed. Pearson Education, Boston.
- [54] Osei-Senyah, E.B.E.N.E.Z.E.R., (2019). Preparation of pre-service music and dance teachers in colleges of education, Ghana (Doctoral dissertation, University of Education, Winneba).<https://ir.uew.edu.gh/handle/123456789/2395>
- [55] Quainoo, E.A., Quansah, F., and Adams, F. (2020). Comparative review of educational reforms, policies, and systems: a case of China and Ghana. *African Journal of Educational Research and Development*, 14(2). Available at:

https://www.academia.edu/download/83558857/20-Article_Text-120-1-10-20201222.pdf

[56] Romberg, T.A. (1997). The influence of programs from other countries on the school mathematics reform curricula in the United States. *American Journal of Education*, 105(1), pp. 1–29. DOI: <https://doi.org/10.1086/444178>

[57] Schmidt, W.H. and Burroughs, N.A., (2016). Influencing public school policy in the United States: the role of large-scale assessments. *Research Papers in Education*, 31(5), pp.567-577.<https://doi.org/10.1080/02671522.2016.1225355>

[58] Schmidt, W.H. and Houang, R.T. (2012). Curricular coherence and the Common Core State Standards for Mathematics. *Educational Researcher*, 41(8), 294–308. <https://doi.org/10.3102/0013189X12464517>

[59] Schmidt, W.H., Houang, R.T., Cogan, L.S., and Solorio, M.L. (2018). *Schooling across the globe: What we have learned from 60 years of mathematics and science international assessments*. Cambridge University Press.

[60] Schwab, J.J. (2013). The practical: A language for the curriculum. *Journal of Curriculum Studies*, 45(5), pp.591-621.<https://doi.org/10.1080/00220272.2013.809152>

[61] Shaw, S. and Rushton, N. (2020). Tracing the trajectory of mathematics teaching across two contrasting educational jurisdictions: A comparative analysis of historical and contemporary influences. *International Education Journal*, 19(3), 145–162. <https://openjournals.library.sydney.edu.au/IEJ/article/view/15641>

[62] Shulman, L.S. and Wilson, S.M. (2004). *The wisdom of practice: Essays on teaching, learning, and learning to teach*. Jossey-Bass.<https://ixtheo.de/Record/374370885>

[63] Stigler, J.W. and Hiebert, J. (1998). Teaching is a cultural activity. *American Educator*, 22(4), pp.4-11.<https://eric.ed.gov/?id=EJ583031>

[64] Taba, H. and Spalding, W.B., (1962). *Curriculum development: Theory and practice* (Vol. 37). New York: Harcourt, Brace & World.<https://library.wur.nl/WebQuery/titel/434479>

[65] Tchombe, T.M. (2020). Comparative perspectives on curriculum reform in Africa and beyond: Balancing global standards and local relevance. *African Journal of Education and Practice*, 6(5), 33–49.

[66] Tikly, L. and Barrett, A.M. (2013). Education quality and social justice in the global south. *Education quality and social justice in the global south. Challenges for policy, practice and research*, pp.11-24.

[67] Wang, J. and Lin, E. (2005). Comparative studies on US and Chinese mathematics learning and the implications for standards-based mathematics teaching reform. *Educational Researcher*, 34(5), pp. 3–13. <https://doi.org/10.3102/0013189X034005003>

[68] Yeboah, B.K. and Ike, P.N. (2020) ‘Programmatic strategy for renewable energy integration: Lessons from large-scale solar projects’, *International Journal of Multidisciplinary Research and Growth Evaluation*, 1(3), 306–315. <https://doi.org/10.54660/IJMRGE.2020.1.3.306-315>