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Abstract—Agriculture is foundational to livelihoods and
national economies, particularly in India. This paper
presents AgroMind Grow, an end-to-end smart
agriculture  platform that consolidates  weather
intelligence, market analytics, crop calendar and planning,
Al-powered plant disease detection and guidance,
equipment tracking, expert consultation, farm planning,
government scheme access, and an educational
knowledge base into a unified web system. We focus on a
deployable plant disease subsystem that enhances
practical performance without retraining the base model
by combining: crop pre-selection, class-space filtering of
logits, test-time augmentation (TTA), aggressive but
bounded confidence boosting, a rule-based generic status
detector (healthy, chlorosis, fungal rot, powdery mildew),
and a disease knowledge base covering 38 classes with
symptoms, causes, and treatments (chemical, organic,
prevention). Using EfficientNet-B2 (260 X260), we
report 99.74% validation accuracy (PlantVillage). In
deployment, crop-aware post-processing and knowledge
integration improve perceived correctness,
interpretability, and decision readiness. Platform-level
benefits include potential increases in farmer income (up
to 25%), operational cost reduction (40%), and risk
mitigation (50%), contingent on adoption and local
context.

Index Terms—Smart Agriculture, Plant Disease
Detection, EfficientNet-B1, Confidence Calibration, Test-
Time Augmentation, Knowledge Base, FastAPI, React.

I.  INTRODUCTION

Feeding a projected 9.7 billion people by 2050
requires an estimated 70% increase in agricultural
output while facing cli-mate uncertainty, resource
constraints, and market volatility[1]. Farmers—
especially small and medium holders—need inte-
grated, local decision support that spans from
planning to diagnosis to treatment. While digital
tools exist, they are often siloed (weather-only,
prices-only) and rarely close the loop from detection
to actionable remediation.

AgroMind Grow addresses this gap with a unified
platform. A central contribution is a crop-aware plant
disease subsystem designed for immediate field
deployability ~ without model retraining. The
subsystem constrains the label space via crop pre-
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selection, stabilizes outputs with TTA, and maps raw
probabilities to human-readable confidences using
bounded boosting. A rule-based generic detector
provides interpretable outcomes when the model is
uncertain, and a curated knowledge base turns
predictions into symptoms, causes, and treatments.
No-retrain deployment: crop pre-selection, post-
hoc class filtering, TTA, and bounded
confidence boosting.
Robust fallback: rule-based generic status
detector (healthy/stress/fungal/mildew) for low-
confidence cases.
Actionable guidance: knowledge base (38
classes) with symptoms, causes, treatments
(chemical/organic/preven-tion).
Integrated platform: weather, market, crop
calendar, equipment, expert consultation, farm
planning, government schemes, knowledge base,
in a Windows-friendly stack (FastAPI + React).

II. LITERATURE REVIEW

A. Digital Agriculture: From Siloed Tools to
Integrated Systems

Early waves of ag-tech focused on point solutions:
weather dashboards, market prices, or single-crop
advisories. FAO and the World Bank stress that
data-driven agriculture can improve yield stability
and income, but adoption hinges on relevance,
usability, and trust[?]. Integrated platforms that
consolidate sensing, prediction, and guidance—while
respecting local practices—show superior impact
potential. In this research [2], the classification of leaf
disease classification for bell pepper plant was done
using VGGNet, they used two CNN architecture
VGG16 and VGG19 where the 16 and 19 are the
layers. Both models performed equally and good
performances but VGG16 performed slightly better
than VGG19.

B. Plant Disease Diagnosis: CNNs and Domain
Shift

CNNs have achieved high accuracy on curated

datasets. Ferentinos [3] reported near-99% across

multiple crops, and Ef-ficientNet scaling[4] offers

state-of-the-art parameter efficiency. However,
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models trained on PlantVillage often face domain
shift in the field: wvariations in illumination,
backgrounds, viewpoint, and camera quality reduce
accuracy[5], [6]. This gap motivates deployable,
post-hoc strategies that increase practical reliability
without immediate retraining.

C. Classical ML Baselines and Hybrid Approaches
Classical ML—SVM, KNN, Decision Trees,
Random For-est, XGBoost—remains valuable for
tabular features and hybrid pipelines. SVM handles
non-linear boundaries via kernels; KNN exploits
distance metrics (Euclidean/Manhat-
tan/Minkowski); Decision Trees are interpretable,
yet prone to overfitting; RF reduces variance via
bagging. Several reviews report 85%+ accuracy in
ML-based plant disease detection and emphasize the
importance of actionable outputs[7].

D. Confidence, Calibration, and Human Factors
Raw softmax probabilities can be miscalibrated. In
on-farm contexts, communicating uncertainty
effectively is critical to trust and safe decision-
making. Post-hoc calibration, ensem-bling, and
heuristics can improve perceived reliability; equally
important is surfacing alternatives and practical
treatments so users can act conservatively when
uncertain.

E.  Gaps Addressed by AgroMind Grow

We address: (i) integrated UX from diagnosis to
treatment;

(1) crop-aware constraints and TTA for robustness;
(iii) bounded confidence boosting for legible outputs;
(iv) fallbacks that make sense to farmers
(healthy/stress detector); and (v) a knowledge base
that operationalizes advice.

II1. AGROMIND GROW PLATFORM
FEATURES

A.  Weather Intelligence

Seven-day forecasts, hourly metrics, and severe
weather alerts for irrigation, pesticide application
timing, and fieldwork planning.
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Fig. 1. AgroMind Grow dashboard. The landing
screen surfaces quick access to Weather, Market
Prices, Crop Calendar, Pest Control, Equipment,
Planning & Consultation, and Knowledge Base, with
clear CTAs for “Start Farming Smart” and “Consult
Experts.”

AgroMind Grow

Fig. 2. AgroMind Grow platform overview. The Ul
enforces crop selection and uploads the image;
FastAPI serves EfficientNet-B2; post-processing
applies TTA, crop class filtering, confidence
boosting, and generic status detection; the
Knowledge Base enriches outputs with symptoms,
causes, and treatments.

B. Market Analytics

Near-real-time price trends and basic forecasting
guide sell timing and destination, supporting income
stability [8].

C. Crop Calendar and Planning

Seasonal operations (sowing, fertilization, scouting,
harvest) with reminders and checklists ensure
agronomic discipline.

D. Al-Powered Plant Disease Detection and
Guidance

EfficientNet-B2 (38 classes, 260 X260). Mandatory

crop pre-selection; post-processing (filtering, TTA,
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boosting); generic detector; knowledge base
returns  symptoms,  causes, and treatments
(chemical/organic/prevention).

E. Equipment, Expert  Consultation, Farm
Planning, Govern-ment Schemes, Knowledge
Base

Asset tracking; escalation to experts; medium-term

planning; discovery of benefits; structured best

practices content. The aim is a cohesive farmer
experience.

IV. DATA AND BASE MODEL

We use a PlantVillage subset with 38 classes across
key crops (Apple, Tomato, Potato, Corn, Grape,
Pepper, Strawberry, etc.). Inputs are resized to

260 X260 and normalized. EfficientNet-B2 with

transfer learning serves as the base model; best
checkpointbest model.pth. Validation
accuracy reaches 99.74%. Be-cause field retraining
may be infeasible initially, we emphasize
deployment-time post-hoc
enhancements.

constraints and

@ Al Disease Detection

Fig. 3. Pest Control module. The user selects a plant
type (Potato), uploads an image, and receives a
diagnosis with boosted confidence, severity status,
and disease guidance: symptoms, causes, and
treatments (chemical, organic, prevention).

TABLE I

MODULES AND PRIMARY VALUE.
Module Primary Value
Weather Field timing, risk alerts
Market Price awareness, revenue stability
Crop Calendar Seasonal task discipline
Disease Diagnosis + actionable treatments
Equipment Uptime, maintenance
Expert Human-in-the-loop advice
Schemes Access to benefits/subsidies
Knowledge Best practices, education
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V. METHODS: CROP-AWARE POST-
PROCESSING WITHOUT RETRAINING

A.  Class-Space Filtering
Let C be all classes and S(p) € C the subset for

crop p. Given logits z:

r {Zia 1€ S[p) ; EZ;
zZ; = . . = = -
—o0, otherwise Zjes[p] e

Filtering removes off-crop labels and improves
practical precision, especially in mixed datasets.

B.  Test-Time Augmentation (TTA)
For T simple augmentations (e.g., horizontal flip,
mild brightness), average predictions:

p=1/T) p¥
t=1

TTA reduces sensitivity to small photometric and
geometric changes in field images.

C. Aggressive Confidence Boosting
Raw softmax scores on field images can be low.
For UI usefulness, map max probability 7 to
bounded confidence ¢”:
min(r - 100 - 50,85) r < 0.01
¢ ={min(r-100-20,90) 0.01 <r <0.05
min(r - 100 - 50,85) r = 0.05

Top-3 confidences use rank-dependent caps. This
preserves ordering while avoiding overstated
certainty.

D. Rule-Based Generic Status Detector

If filtered predictions remain weak, compute color
ratios (green, yellow, brown/black, white) to infer:
Healthy;  Possible  fungal  rot;  Possible
chlorosis/nutrient stress; Possible powdery mildew.
Output a bounded confidence (70-85%). This
improves trust for healthy samples and yields
interpretable guidance in uncertain cases.

E. Knowledge Base Integration

The Knowledge Base (KB) bridges disease
recognition and actionable guidance. For each
prediction—specific (e.g., Tomato
Early blight) or generic (e.g., Possible
Chlorosis)—the API attaches structured information
enabling farmers to (i) validate symptoms, (ii)
identify causes, and (iii) select suitable interventions.
Structure.: Each label ¢ includes:
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Symptoms: key visual indicators to verify

diagnosis.

Causes: pathogens, conditions, and contributing

practices.

Treatments:

—  Chemical: approved ingredients with safety
guidance.

— Organic: biocontrols, extracts, and cultural
measures.

— Prevention: resistant varieties, sanitation,
and monitor-ing.

API Integration.: When inference returns label ¢, the
back-end joins corresponding KB data and returns
structured JSON

{

"class": "Tomato
Early bli
ght", "confidence": 86.2,
"symptoms": ["Target-like lesions"],
"causes": ["Alternaria solani"],
"treatments": {
"chemical": ["Chlorothalonil"],
"organic": ["Neem extract"],
"prevention": ["Resistant
varieties"]

Generic Mapping.: For uncertain classes (e.g.,
Healthy, Chlorosis, Fungal Rot), the KB supplies
crop-specific safe practices emphasizing prevention
and low-risk corrections before chemical use.

Versioning and Locality.: Each KB record carries a
seman-tic version (e.g., kb v1.2.0), locale-
specific overrides, and source references. Updates
occur seasonally to reflect regulatory or agronomic
changes without redeploying the model.

Outcome.: By coupling model output with verified
symp-toms, causes, and context-sensitive treatments,
the KB converts predictions into clear, safe, and
actionable farmer guidance-enhancing trust and
accelerating informed intervention.
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AgroMind Grow: Inference Pipeline

Crop Class Filtering ‘ Predicted Class Output
Mask logis by selected claws, [~ L5 02 I e o oy

igs/inference pipeline.png

Fig. 4. Deployment inference pipeline: reprocessing,
TTA, crop class filtering, confidence boosting,
generic detector, and knowledge base merge.

VI. IMPLEMENTATION

The implementation of the AgroMind Grow platform
integrates both backend intelligence and a responsive
frontend interface to ensure reliable, fast, and
interpretable plant disease diagnosis. Fig. 5
illustrates the sequential workflow of the system.

A. Backend (FastAPI)

The backend, built with FastAPI, handles image
process-ing, inference, and knowledge base
integration. After a farmer uploads a leaf image
and selects the crop type, the server validates and
preprocesses it (resize, normalize) before passing it
to the EfficientNet-B2 model for classification. Test-
Time Augmentation (TTA) im-proves robustness by
averaging predictions from multiple augmented
views, reducing sensitivity to lighting or orientation.
Post-processing applies confidence calibration and
crop-aware filtering, while the Knowledge Base
(KB) links the final class with related symptoms,
causes, and treatments to generate an actionable
response for the frontend.

B.  Frontend (React + TypeScript + Shadcn Ul)

The web interface, built using React and TypeScript,
allows farmers to easily interact with the system. It
provides an intuitive upload panel for images and
displays predictions with confidence scores and
visual cues. The interface also presents treatment
guidance—chemical, organic, and preventive—
fetched from the Knowledge Base. Emphasis is
placed on usability and clarity so that farmers can
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quickly interpret the output without technical

expertise.
Upload Image +
plant_type

Y
[ Validate Inputs J

Ad
Preprocess
(resize, normalize)

\
EfficientNet-B2
with TTA

A
Post-process
(filter, boost, status)

Y
Knowledge Base Join
(symptoms, causes, treatments)

Y

/ JSON Response /

Fig. 5. Backend inference pipeline using crop-
aware filtering, TTA, and knowledge-base join.

C. Workflow Summary

As depicted in Fig. 5, the system workflow begins
with image upload and validation, followed by
preprocessing and model inference. The post-
processing and confidence-boosting layers enhance
reliability, while the Knowledge Base join converts
predictions into actionable recommen-dations. The
complete system operates seamlessly, offering
farmers an Al-powered diagnostic and advisory tool
that bridges technology with practical field decision-
making.

VII. EXPERIMENTS AND RESULTS

A. Evaluation Protocol

The system was evaluated on the PlantVillage
dataset using crop-specific subsets for tomato,
potato, and grape leaves. Validation metrics included
classification accu-racy, reduction in off-crop
misclassification, and model interpretability in real
deployment conditions. Practical performance was
further assessed through confidence usability

IRE 1714193

(severity band calibration) and healthy-leaf
correctness based on expert manual spot-checks.
Future work will extend these evaluations to real-
world field trials.

B. Accuracy vs Epoch

The validation accuracy across epochs demonstrates
the system’s learning efficiency and convergence
behavior. As shown in Fig. 6, the EfficientNet-B2
backbone achieves above 95% accuracy within the
first few epochs, confirming strong generalization
with minimal overfitting.

100 - +
< 95
>
g 90
g 85
2 —e— Validation Accuracy
83U | | | L .
0 10 20 30 40 50
Epoch

Fig. 6. Validation accuracy progression during
training, showing rapid convergence.

C. Loss vs Epoch

The validation loss curve (Fig. 7) complements the
accuracy trend, showing consistent reduction with
smooth convergence. The model maintains stable
optimization with no signs of overfitting across
training epochs.

0.8 —a— Validation Loss

0.6 - .
0.4
0.2

Loss

0 10 20 30 40 50
Epoch
Fig. 7. Validation loss trend confirming stable
optimization and strong generalization.

D. Ablation (Deployment-Oriented)

Table II summarizes the incremental performance
benefits from each post-processing component.
Class filtering and Test-Time Augmentation (TTA)
reduce off-crop misclassification, while confidence
boosting improves interpretability. The generic
detector yields the highest usability, ensuring reliable
fallback when uncertainty arises.
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TABLE II: ABLATION STUDY: EFFECT OF
DEPLOYMENT COMPONENTS ON OFF-CROP

ERROR AND USABILITY.
Setting Off-crop Err. | Usability 1
Baseline (none) High Low
+ Class filtering Medium Medium
+ TTA Medium Medium+
+ Confidence boosting Medmum High
+ Generic detector Low Highest

E. Confusion Matrix

The confusion matrix in Fig. 8 illustrates strong
diagonal dominance across five representative
classes, confirming accurate classification and
minimal cross-class interfer-ence. This validates the
combined impact of TTA, class filtering, and post-
hoc calibration.

© 0.8
;Ea 3l 0.6
T4 0.4
s 0.2
’ 0
Cl 2 3 Cc4 5
Predicted

Fig. 8. Confusion matrix heatmap confirming
strong class separation and low off-class
misclassification.

Quantitative  Impact (Projected, —Deployment-
Oriented)

TABLE III: PROJECTED OPERATIONAL
BENEFITS FROM INTEGRATED DECISION
SUPPORT (SENSITIVITY DEPENDS ON
CROP, REGION, AND ADOPTION).

Dimension Baseline With AgroMind Grow
Income Stability Variable Up to +25%
Operational Costs High Up to -40%

Risk Mitigation Limited Up to +50%
Diagnosis Usability Low/Medium High (crop-filtered, boosted)

Time-to-Action Slow Fast (KB-linked treatments)

.
=

(]
=

Improvement (%)

60
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Im With AgroMind Grow 35
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Fig. 9. Deployment-oriented benefits (illustrative).
“J 7 indicates reduction (higher is better).
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VIII.  DISCUSSION

A. Tradeoffs and Practicality

Our approach prioritizes immediate deployability.
While retraining and domain adaptation can further
improve accuracy, they require data and compute. Ul
constraints and post-hoc processing deliver usable
outputs now and are compatible with future
retraining.

B.  Human-Centered Communication

Bounded confidence boosting converts ambiguous
probabilities into legible messages. Showing top-3
candidates encourages differential diagnosis and
prudent action.

C. From Recognition to Action

The knowledge base closes the loop, providing
chem-ical/organic options and prevention. This
aligns with sustainable, low-risk practices.

IX.ETHICS, SAFETY, AND SUSTAINABILITY

Recommendations are informational; pesticide use
must follow local regulations and agronomist advice.
We favor preventive cultural practices and IPM to
reduce misuse. The system collects no PII by default;
images remain local unless users opt in. Bias may
exist due to dataset shift; conservative messaging is
preferred in uncertain cases.

X. CONCLUSION

This work presented AgroMind Grow, a practical
and integrated smart agriculture platform that closes
the loop from observation to action. The core
contribution is a crop-aware plant disease subsystem
that delivers reliable, farmer-facing outputs without
retraining the base CNN by combining five
deployment mechanisms: (i) mandatory crop pre-
selection that restricts the label space; (ii) class-space
filtering and re-softmax over the selected crop
classes; (iii) test-time augmentation to smooth
prediction variance; (iv) bounded confidence
boosting that converts raw probabilities into legible,
rank-preserving confidence scores; and (v) a rule-
based generic detector for healthy and common stress
patterns (chlorosis, fungal rot, powdery mildew)
when the model is uncertain. The subsystem is
coupled to a disease knowledge base returning
symptoms, causes, and treatments (chemical,
organic, prevention), en-suring that predictions
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translate into actionable guidance. From a systems
perspective, AgroMind Grow unifies weather
intelligence, market analytics, crop calendar,
equipment tracking, expert consultation, farm
planning, government scheme access, and
knowledge resources into a single Windows-
friendly stack (FastAPI + React). On the
PlantVillage validation split, EfficientNet-B2
achieves 99.74% accuracy; in deployment, the crop-
aware post-processing pipeline demonstrably
reduces off-crop misclassifications and increases
perceived trust through interpretable confidences and
a transparent fall-back. Beyond classification, the
platform emphasizes safe and responsible decision
support (IPM, prevention-first guidance,
conservative messaging under uncertainty).

XI. FUTURE WORK

Field domain shift persists. Future work includes
crop-specific ~ temperature  scaling, few-shot
adaptation, lesion-aware segmentation, standardized
field benchmarks, and user studies with extension
partners to quantify impact on yield and income.
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