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Abstract—Agriculture is foundational to livelihoods and 

national economies, particularly in India. This paper 

presents AgroMind Grow, an end-to-end smart 

agriculture platform that consolidates weather 

intelligence, market analytics, crop calendar and planning, 

AI-powered plant disease detection and guidance, 

equipment tracking, expert consultation, farm planning, 

government scheme access, and an educational 

knowledge base into a unified web system. We focus on a 

deployable plant disease subsystem that enhances 

practical performance without retraining the base model 

by combining: crop pre-selection, class-space filtering of 

logits, test-time augmentation (TTA), aggressive but 

bounded confidence boosting, a rule-based generic status 

detector (healthy, chlorosis, fungal rot, powdery mildew), 

and a disease knowledge base covering 38 classes with 

symptoms, causes, and treatments (chemical, organic, 

prevention). Using EfficientNet-B2 (260×260), we 

report 99.74% validation accuracy (PlantVillage). In 

deployment, crop-aware post-processing and knowledge 

integration improve perceived correctness, 

interpretability, and decision readiness. Platform-level 

benefits include potential increases in farmer income (up 

to 25%), operational cost reduction (40%), and risk 

mitigation (50%), contingent on adoption and local 

context. 

 

Index Terms—Smart Agriculture, Plant Disease 

Detection, EfficientNet-B1, Confidence Calibration, Test-

Time Augmentation, Knowledge Base, FastAPI, React. 

 

I. INTRODUCTION 

 

Feeding a projected 9.7 billion people by 2050 

requires an estimated 70% increase in agricultural 

output while facing cli-mate uncertainty, resource 

constraints, and market volatility[1]. Farmers—

especially small and medium holders—need inte-

grated, local decision support that spans from 

planning to diagnosis to treatment. While digital 

tools exist, they are often siloed (weather-only, 

prices-only) and rarely close the loop from detection 

to actionable remediation. 

 

AgroMind Grow addresses this gap with a unified 

platform. A central contribution is a crop-aware plant 

disease subsystem designed for immediate field 

deployability without model retraining. The 

subsystem constrains the label space via crop pre-

selection, stabilizes outputs with TTA, and maps raw 

probabilities to human-readable confidences using 

bounded boosting. A rule-based generic detector 

provides interpretable outcomes when the model is 

uncertain, and a curated knowledge base turns 

predictions into symptoms, causes, and treatments. 

• No-retrain deployment: crop pre-selection, post-

hoc class filtering, TTA, and bounded 

confidence boosting. 

• Robust fallback: rule-based generic status 

detector (healthy/stress/fungal/mildew) for low-

confidence cases. 

• Actionable guidance: knowledge base (38 

classes) with symptoms, causes, treatments 

(chemical/organic/preven-tion). 

• Integrated platform: weather, market, crop 

calendar, equipment, expert consultation, farm 

planning, government schemes, knowledge base, 

in a Windows-friendly stack (FastAPI + React). 

 

II. LITERATURE REVIEW 

 

A. Digital Agriculture: From Siloed Tools to 

Integrated Systems 

Early waves of ag-tech focused on point solutions: 

weather dashboards, market prices, or single-crop 

advisories. FAO and the World Bank stress that 

data-driven agriculture can improve yield stability 

and income, but adoption hinges on relevance, 

usability, and trust[?]. Integrated platforms that 

consolidate sensing, prediction, and guidance—while 

respecting local practices—show superior impact 

potential. In this research [2], the classification of leaf 

disease classification for bell pepper plant was done 

using VGGNet, they used two CNN architecture 

VGG16 and VGG19 where the 16 and 19 are the 

layers. Both models performed equally and good 

performances but VGG16 performed slightly better 

than VGG19. 

 

B. Plant Disease Diagnosis: CNNs and Domain 

Shift 

CNNs have achieved high accuracy on curated 

datasets. Ferentinos [3] reported near-99% across 

multiple crops, and Ef-ficientNet scaling[4] offers 

state-of-the-art parameter efficiency. However, 
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models trained on PlantVillage often face domain 

shift in the field: variations in illumination, 

backgrounds, viewpoint, and camera quality reduce 

accuracy[5], [6]. This gap motivates deployable, 

post-hoc strategies that increase practical reliability 

without immediate retraining. 

 

C. Classical ML Baselines and Hybrid Approaches 

Classical ML—SVM, KNN, Decision Trees, 

Random For-est, XGBoost—remains valuable for 

tabular features and hybrid pipelines. SVM handles 

non-linear boundaries via kernels; KNN exploits 

distance metrics (Euclidean/Manhat-

tan/Minkowski); Decision Trees are interpretable, 

yet prone to overfitting; RF reduces variance via 

bagging. Several reviews report 85%+ accuracy in 

ML-based plant disease detection and emphasize the 

importance of actionable outputs[7]. 

 

D. Confidence, Calibration, and Human Factors 

Raw softmax probabilities can be miscalibrated. In 

on-farm contexts, communicating uncertainty 

effectively is critical to trust and safe decision-

making. Post-hoc calibration, ensem-bling, and 

heuristics can improve perceived reliability; equally 

important is surfacing alternatives and practical 

treatments so users can act conservatively when 

uncertain. 

 

E. Gaps Addressed by AgroMind Grow 

We address: (i) integrated UX from diagnosis to 

treatment; 

(ii) crop-aware constraints and TTA for robustness; 

(iii) bounded confidence boosting for legible outputs; 

(iv) fallbacks that make sense to farmers 

(healthy/stress detector); and (v) a knowledge base 

that operationalizes advice. 

 

III. AGROMIND GROW PLATFORM 

FEATURES 

 

A. Weather Intelligence 

Seven-day forecasts, hourly metrics, and severe 

weather alerts for irrigation, pesticide application 

timing, and fieldwork planning. 

 
Fig. 1. AgroMind Grow dashboard. The landing 

screen surfaces quick access to Weather, Market 

Prices, Crop Calendar, Pest Control, Equipment, 

Planning & Consultation, and Knowledge Base, with 

clear CTAs for “Start Farming Smart” and “Consult 

Experts.” 

 
Fig. 2. AgroMind Grow platform overview. The UI 

enforces crop selection and uploads the image; 

FastAPI serves EfficientNet-B2; post-processing 

applies TTA, crop class filtering, confidence 

boosting, and generic status detection; the 

Knowledge Base enriches outputs with symptoms, 

causes, and treatments. 

 

B. Market Analytics 

Near-real-time price trends and basic forecasting 

guide sell timing and destination, supporting income 

stability [8]. 

 

C. Crop Calendar and Planning 

Seasonal operations (sowing, fertilization, scouting, 

harvest) with reminders and checklists ensure 

agronomic discipline. 

 

D. AI-Powered Plant Disease Detection and 

Guidance 

EfficientNet-B2 (38 classes, 260×260). Mandatory 

crop pre-selection; post-processing (filtering, TTA, 
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boosting); generic detector; knowledge base 

returns symptoms, causes, and treatments 

(chemical/organic/prevention). 

 

E. Equipment, Expert Consultation, Farm 

Planning, Govern-ment Schemes, Knowledge 

Base 

Asset tracking; escalation to experts; medium-term 

planning; discovery of benefits; structured best 

practices content. The aim is a cohesive farmer 

experience. 

 

IV. DATA AND BASE MODEL 

 

We use a PlantVillage subset with 38 classes across 

key crops (Apple, Tomato, Potato, Corn, Grape, 

Pepper, Strawberry, etc.). Inputs are resized to 

260×260 and normalized. EfficientNet-B2 with 

transfer learning serves as the base model; best 

checkpointbest_model.pth. Validation 

accuracy reaches 99.74%. Be-cause field retraining 

may be infeasible initially, we emphasize 

deployment-time constraints and post-hoc 

enhancements. 

 

 
Fig. 3. Pest Control module. The user selects a plant 

type (Potato), uploads an image, and receives a 

diagnosis with boosted confidence, severity status, 

and disease guidance: symptoms, causes, and 

treatments (chemical, organic, prevention). 

 

TABLE I 

MODULES AND PRIMARY VALUE. 

 
 

 

 

V. METHODS: CROP-AWARE POST-

PROCESSING WITHOUT RETRAINING 

 

A. Class-Space Filtering 

Let C be all classes and S(p) ⊂ C the subset for 

crop p. Given logits z: 

 
 

Filtering removes off-crop labels and improves 

practical precision, especially in mixed datasets. 

 

B. Test-Time Augmentation (TTA) 

For T simple augmentations (e.g., horizontal flip, 

mild brightness), average predictions: 

 

                          

 

TTA reduces sensitivity to small photometric and 

geometric changes in field images. 

 

C. Aggressive Confidence Boosting 

Raw softmax scores on field images can be low. 

For UI usefulness, map max probability r to 

bounded confidence cˆ: 

𝑐 = {

𝑚𝑖𝑛(𝑟 ⋅ 100 ⋅ 50,85) 𝑟 < 0.01

𝑚𝑖𝑛(𝑟 ⋅ 100 ⋅ 20,90) 0.01 ≤ 𝑟 < 0.05

𝑚𝑖𝑛(𝑟 ⋅ 100 ⋅ 50,85) 𝑟 ≥ 0.05

} 

 

Top-3 confidences use rank-dependent caps. This 

preserves ordering while avoiding overstated 

certainty. 

 

D. Rule-Based Generic Status Detector 

If filtered predictions remain weak, compute color 

ratios (green, yellow, brown/black, white) to infer: 

Healthy; Possible fungal rot; Possible 

chlorosis/nutrient stress; Possible powdery mildew. 

Output a bounded confidence (70–85%). This 

improves trust for healthy samples and yields 

interpretable guidance in uncertain cases. 

 

E. Knowledge Base Integration 

The Knowledge Base (KB) bridges disease 

recognition and actionable guidance. For each 

prediction—specific (e.g., Tomato 

Early_blight) or generic (e.g., Possible 

Chlorosis)—the API attaches structured information 

enabling farmers to (i) validate symptoms, (ii) 

identify causes, and (iii) select suitable interventions. 

Structure.: Each label ℓ includes: 
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• Symptoms: key visual indicators to verify 

diagnosis. 

• Causes: pathogens, conditions, and contributing 

practices. 

• Treatments: 

– Chemical: approved ingredients with safety 

guidance. 

– Organic: biocontrols, extracts, and cultural 

measures. 

– Prevention: resistant varieties, sanitation, 

and monitor-ing. 

 

API Integration.: When inference returns label ℓ, the 

back-end joins corresponding KB data and returns 

structured JSON  

 

 

 

 

 

 

 

 

 

 

 

 

Generic Mapping.: For uncertain classes (e.g., 

Healthy, Chlorosis, Fungal Rot), the KB supplies 

crop-specific safe practices emphasizing prevention 

and low-risk corrections before chemical use. 

 

Versioning and Locality.: Each KB record carries a 

seman-tic version (e.g., kb_v1.2.0), locale-

specific overrides, and source references. Updates 

occur seasonally to reflect regulatory or agronomic 

changes without redeploying the model. 

 

Outcome.: By coupling model output with verified 

symp-toms, causes, and context-sensitive treatments, 

the KB converts predictions into clear, safe, and 

actionable farmer guidance-enhancing trust and 

accelerating informed intervention. 

 
Fig. 4. Deployment inference pipeline: reprocessing, 

TTA, crop class filtering, confidence boosting, 

generic detector, and knowledge base merge. 

 

VI. IMPLEMENTATION 

 

The implementation of the AgroMind Grow platform 

integrates both backend intelligence and a responsive 

frontend interface to ensure reliable, fast, and 

interpretable plant disease diagnosis. Fig. 5 

illustrates the sequential workflow of the system. 

 

A. Backend (FastAPI) 

The backend, built with FastAPI, handles image 

process-ing, inference, and knowledge base 

integration. After a farmer uploads a leaf image 

and selects the crop type, the server validates and 

preprocesses it (resize, normalize) before passing it 

to the EfficientNet-B2 model for classification. Test-

Time Augmentation (TTA) im-proves robustness by 

averaging predictions from multiple augmented 

views, reducing sensitivity to lighting or orientation. 

Post-processing applies confidence calibration and 

crop-aware filtering, while the Knowledge Base 

(KB) links the final class with related symptoms, 

causes, and treatments to generate an actionable 

response for the frontend. 

 

B. Frontend (React + TypeScript + Shadcn UI) 

The web interface, built using React and TypeScript, 

allows farmers to easily interact with the system. It 

provides an intuitive upload panel for images and 

displays predictions with confidence scores and 

visual cues. The interface also presents treatment 

guidance—chemical, organic, and preventive—

fetched from the Knowledge Base. Emphasis is 

placed on usability and clarity so that farmers can 

{ 

"class": "Tomato

 Early_bli

ght", "confidence": 86.2, 

"symptoms": ["Target-like lesions"], 

"causes": ["Alternaria solani"], 

"treatments": { 

"chemical": ["Chlorothalonil"], 

"organic": ["Neem extract"], 

"prevention": ["Resistant 

varieties"] 

} 

} 
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quickly interpret the output without technical 

expertise. 

 

 
Fig. 5. Backend inference pipeline using crop-

aware filtering, TTA, and knowledge-base join. 

 

C. Workflow Summary 

As depicted in Fig. 5, the system workflow begins 

with image upload and validation, followed by 

preprocessing and model inference. The post-

processing and confidence-boosting layers enhance 

reliability, while the Knowledge Base join converts 

predictions into actionable recommen-dations. The 

complete system operates seamlessly, offering 

farmers an AI-powered diagnostic and advisory tool 

that bridges technology with practical field decision-

making. 

 

VII. EXPERIMENTS AND RESULTS 

 

A. Evaluation Protocol 

The system was evaluated on the PlantVillage 

dataset using crop-specific subsets for tomato, 

potato, and grape leaves. Validation metrics included 

classification accu-racy, reduction in off-crop 

misclassification, and model interpretability in real 

deployment conditions. Practical performance was 

further assessed through confidence usability 

(severity band calibration) and healthy-leaf 

correctness based on expert manual spot-checks. 

Future work will extend these evaluations to real-

world field trials. 

 

B. Accuracy vs Epoch 

The validation accuracy across epochs demonstrates 

the system’s learning efficiency and convergence 

behavior. As shown in Fig. 6, the EfficientNet-B2 

backbone achieves above 95% accuracy within the 

first few epochs, confirming strong generalization 

with minimal overfitting. 

 

 
Fig. 6. Validation accuracy progression during 

training, showing rapid convergence. 

 

C. Loss vs Epoch 

The validation loss curve (Fig. 7) complements the 

accuracy trend, showing consistent reduction with 

smooth convergence. The model maintains stable 

optimization with no signs of overfitting across 

training epochs. 

 

 
Fig. 7. Validation loss trend confirming stable 

optimization and strong generalization. 

 

D. Ablation (Deployment-Oriented) 

Table II summarizes the incremental performance 

benefits from each post-processing component. 

Class filtering and Test-Time Augmentation (TTA) 

reduce off-crop misclassification, while confidence 

boosting improves interpretability. The generic 

detector yields the highest usability, ensuring reliable 

fallback when uncertainty arises. 
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TABLE II: ABLATION STUDY: EFFECT OF 

DEPLOYMENT COMPONENTS ON OFF-CROP 

ERROR AND USABILITY. 

 
 

E. Confusion Matrix 

The confusion matrix in Fig. 8 illustrates strong 

diagonal dominance across five representative 

classes, confirming accurate classification and 

minimal cross-class interfer-ence. This validates the 

combined impact of TTA, class filtering, and post-

hoc calibration. 

 

 
Fig. 8. Confusion matrix heatmap confirming 

strong class separation and low off-class 

misclassification. 

 

Quantitative Impact (Projected, Deployment-

Oriented) 

 

TABLE III: PROJECTED OPERATIONAL 

BENEFITS FROM INTEGRATED DECISION 

SUPPORT (SENSITIVITY DEPENDS ON 

CROP, REGION, AND ADOPTION). 

 
 

 
Fig. 9. Deployment-oriented benefits (illustrative). 

“↓” indicates reduction (higher is better). 

 

 

VIII. DISCUSSION 

 

A. Tradeoffs and Practicality 

Our approach prioritizes immediate deployability. 

While retraining and domain adaptation can further 

improve accuracy, they require data and compute. UI 

constraints and post-hoc processing deliver usable 

outputs now and are compatible with future 

retraining. 

 

B. Human-Centered Communication 

Bounded confidence boosting converts ambiguous 

probabilities into legible messages. Showing top-3 

candidates encourages differential diagnosis and 

prudent action. 

 

C. From Recognition to Action 

The knowledge base closes the loop, providing 

chem-ical/organic options and prevention. This 

aligns with sustainable, low-risk practices. 

 

IX. ETHICS, SAFETY, AND SUSTAINABILITY 

 

Recommendations are informational; pesticide use 

must follow local regulations and agronomist advice. 

We favor preventive cultural practices and IPM to 

reduce misuse. The system collects no PII by default; 

images remain local unless users opt in. Bias may 

exist due to dataset shift; conservative messaging is 

preferred in uncertain cases. 

 

X. CONCLUSION 

 

This work presented AgroMind Grow, a practical 

and integrated smart agriculture platform that closes 

the loop from observation to action. The core 

contribution is a crop-aware plant disease subsystem 

that delivers reliable, farmer-facing outputs without 

retraining the base CNN by combining five 

deployment mechanisms: (i) mandatory crop pre-

selection that restricts the label space; (ii) class-space 

filtering and re-softmax over the selected crop 

classes; (iii) test-time augmentation to smooth 

prediction variance; (iv) bounded confidence 

boosting that converts raw probabilities into legible, 

rank-preserving confidence scores; and (v) a rule-

based generic detector for healthy and common stress 

patterns (chlorosis, fungal rot, powdery mildew) 

when the model is uncertain. The subsystem is 

coupled to a disease knowledge base returning 

symptoms, causes, and treatments (chemical, 

organic, prevention), en-suring that predictions 
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translate into actionable guidance. From a systems 

perspective, AgroMind Grow unifies weather 

intelligence, market analytics, crop calendar, 

equipment tracking, expert consultation, farm 

planning, government scheme access, and 

knowledge resources into a single Windows-

friendly stack (FastAPI + React). On the 

PlantVillage validation split, EfficientNet-B2 

achieves 99.74% accuracy; in deployment, the crop-

aware post-processing pipeline demonstrably 

reduces off-crop misclassifications and increases 

perceived trust through interpretable confidences and 

a transparent fall-back. Beyond classification, the 

platform emphasizes safe and responsible decision 

support (IPM, prevention-first guidance, 

conservative messaging under uncertainty). 

 

XI. FUTURE WORK 

 

Field domain shift persists. Future work includes 

crop-specific temperature scaling, few-shot 

adaptation, lesion-aware segmentation, standardized 

field benchmarks, and user studies with extension 

partners to quantify impact on yield and income. 
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