

Parkinson's Disease and Stem Cell-Based Therapies: Current Research and Future Directions (2026)

DARSHANA PADMAKUMAR

CPS global school

Abstract - *Parkinson's disease is a neurodegenerative disorder arising in elderly people above the age of 60. More than 10 million people worldwide are living with Parkinson's disease. The loss of dopaminergic neurons which produce and release dopamine leads to PD. These neurons play a crucial role in motor control and coordination. Current treatments include dopamine replacement therapy(DRT) which do not possess the potential in managing extreme motor symptoms in patients who have advanced PD. However, in recent years stem cell-based therapies have been studied due to their potential in treating PD. Cell replacement therapy(CRT) has emerged as a promising research area in which dopaminergic neurons are replaced with healthy neurons that seek to achieve sustained motor function improvements. Researchers have studied different types of stem cells, including embryonic stem cells (ESCs), neural stem cells (NSCs), mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs). However, cell-based therapies still face various challenges such as tumorigenicity and ethical concerns for stem cells such as ESCs. However these challenges could be overcome. For example, integrating nanotechnology and stem cell based therapy could improve safety and efficacy of CRT. This review provides a comprehensive overview on the current treatments for Parkinson's disease using stem cells, the challenges and the future directions for this path of research such as nano-stem treatments.*

I. INTRODUCTION

The substantia nigra pars compacta area which is a region within the midbrain contains the dopaminergic neurons which produce dopamine - a vital neurotransmitter. The deterioration of these neurons leads to Parkinson's disease. There are about five million dopaminergic neurons in a healthy person. There are various motor symptoms such as rigidity, tremor, bradykinesia, and postural instability. Although age is a factor in the occurrence of Parkinson's disease, gender has been a factor. It is found that men have the greater probability of having Parkinson's instead of women.

Current treatments include medications such as : levodopa which is used as a dopamine replacement

agent., and bromocriptine to relieve bradykinesia and rigidity. Deep brain stimulation(DBS) has been established as a secure surgical treatment for patients with failed medical treatment or extreme side effects from medication. However, these treatments are not capable of curing or terminating the progression of the disease. They aid in controlling the major motor and non motor symptoms of PD. Despite the utility of these treatments in managing symptoms, their inability to halt disease progression necessitates the exploration of innovative approaches, such as stem cell-based therapies, which offer a promising avenue for not just managing but potentially reversing the course of PD

CRT has the potential to reduce or prevent the disease progression unlike the current treatments. The number of surviving dopaminergic neurons can be increased with CRT which could offer a more comprehensive and enduring solution, reducing patients' reliance on symptomatic treatments and improving their overall quality of life. This ability makes cell replacement therapy a promising approach compared to the current treatments available for PD.

Stem cells are unspecialised cells, that can proliferate and have the ability to differentiate into any type of cell in an organism. These cells are present in embryos and adult somatic cells. In the 21st century, stem cells have been widely used in regenerative medicine. The exploration of the behaviour of stem cells including their multiplication, specialization, movement and communication processes, has the potential to enhance tissue healing and regeneration after injury. The study of these stem cells could uncover novel paths to stimulate patient's natural repair mechanisms.

Integration of stem cell therapy and nanotechnology has been claimed to aid scientists to gain knowledge on the differentiation of stem cell regulation, which will lead the path to discover the game plan of stem

cell based therapy to increase safety and efficacy. Nanotechnology has various applications in stem cell isolation, purification and differentiation. Ideal substrates for large-scale stem cell proliferation is provided with nanotechnology. This review also talking about the preclinical studies with animal models and clinical studies with fetal ventral mesencephalic(FVM) graft tissues on PD patients.

Preclinical studies

Preclinical studies have been performed on animal models which have showcased the potential of stem cell types. It is shown that stem cells can differentiate into dopaminergic neurons and improve the motor functions such as walking and running. MSCs have been observed in these models for their distinct properties: neuroprotective and immunomodulatory.

Clinical studies

Safety and efficacy has been a major setback in CRT, thus clinical trials on PD patients have been observed. The first set of trials utilized fetal ventral mesencephalic(FVM) graft tissues. Unfortunately, the outcomes of FVM transplantation has not been consistent over the years. Various patients were observed to develop graft induced dyskinesia. Open label trials were conducted on 2 PD patients in each trials in 1980's in Sweden and Mexico. These open label trials demonstrated that FVM can survive and integrate and show improvements in some patients by increasing dopamine uptake in the brain proved by PET scans. However, on the other hand two subsequent double blind placebo controlled trials raised concerns on the efficacy and the graft induced dyskinesia. More recent clinical studies have explored other cell sources such as embryonic stem cells, induced pluripotent stem cells, but they are still in their early stages. Further research is needed to refine techniques before additional clinical trials.

Cell sources for CRT

This section introduces the types of stem cells used for cell replacement therapy (embryonic stem cells, neural stem cells, mesenchymal stem cells, and induced pluripotent stem cells) along with their advantages and limitations.

1. Embryonic stem cells
2. Neural stem cells
3. Mesenchymal stem cells
4. Induced pluripotent stem cells

Induced pluripotent stem cells are obtained from adjusted embryonic and adult mouse fibroblasts. Thus is easily accessible allowing further PD research. Midbrain DA neurons can be generated using iPSC technology. As iPSC's can be obtained from the patient's own cells, these cells are suitable for autologous grafting overcoming ethical concerns and immune rejection thus eliminates the need for drugs which have severe side effects.

Preclinical studies based on animal models show that iPSC-derived dopamine neurons can survive, integrate and improve motor functions due to genetic compatibility. The non-invasive collection minimizes the discomfort patients face and simplifies the cell harvesting procedure, making it more practical for widespread clinical application. These advantages make iPSCs a promising tool for developing more effective and personalized treatments for PD. Nevertheless, iPSC's have been observed to have genetic instability due to non-random mutations on chromosomes. This decreases iPSC reproducibility due to various gene variants. Due to their pluripotent nature iPSCs possess tumorigenic potential and the use of oncogenic factors in the reprogramming process. The risk of tumor formation remains a significant drawback in clinical applications. Incomplete reprogramming can further exacerbate the risk.

Nanotechnology in CRT

“Nano” refers to dimensions ranging from 1-100 nm; it fills the gaps between atomic or molecular framework and macroscopic compounds. There are many benefits of integrating nanotechnology with stem cell therapy: nanotechnology can aid in enhancing targeted drug delivery to specific tissues or cells improving efficacy and reducing off-target effects of stem. Fluorescent nanostructures called quantum dots can enhance bioimaging, biosensing, and enhancing cell differentiation. Nanomaterials provide a protective layer to ameliorate the viability of stem cells and protect them against immunosuppression. For Parkinson's disease, nanoparticles can deliver drugs to specific regions of the brain which PD has affected such as dopamine replacement therapy. Neurotrophic factors can be delivered by nanoparticles to preserve dopaminergic neurons. Nanoengineered scaffolds and surfaces with specific topographical features are being developed to direct stem cell fate and differentiation into desired cell lineages. The scaffolds mimic the

architecture of natural extracellular matrix, these scaffolds can influence stem cell adhesion, proliferation and differentiation without the need for chemical induction factors. The various stable nanomaterials are graphene and carbon nanotubes. Although the integration of nanotechnology and stem-cell therapy has enhanced therapies, there are various challenges, such as biocompatibility and toxicity. There could be adverse effects on stem cells and adjacent tissues if the biocompatibility is not examined. Long-term security evaluation and extensive preliminary research needs to be conducted to ensure safety and efficacy. As the field progresses, it is expected that nanotechnology will play an increasingly important role in advancing stem cell-based therapies for various diseases and injuries. The combination of these technologies may lead to more effective treatments for neurodegenerative disorders, cardiovascular diseases, and other conditions where current therapies fall short. However, careful evaluation of safety profiles and rigorous preclinical testing will be crucial before these nanoenabled stem cell therapies can be translated into clinical applications.

Major challenges

The main setbacks of cell replacement therapy does not only stop at the limitations of each stem cell types as discussed above in the paper. It is found that the biological challenges can be overcome by introducing a suicide gene in the cells to improve the safety of neural transplants. Researches brought hPSC line carrying a suicide gene to remove the proliferative cells surgically to improve the safety on parkinsonian rats and addresses concerns on low dopamine production. To accelerate the clinical translation process, the regulatory challenges must be overcome.

One of the setbacks is the lack of standardised classification system. This causes the uncertainty in clinical outcomes which will create a setback in the exponential growth of the therapy.

Additionally, high costs are required with developing and testing cell therapies.

Future directions

Personalizing patient specific CRT treatments according to factors like genetic factors and compatibility with autologous or allogenic sources. Exploring the combination of CRT along

with other technology such as nanotechnology is effective. Nano-stem technology has been aiming to improve the efficiency of PD treatment. Nanomaterials can manipulate and control the behaviour of NSCs. Nanomaterials have the capacity to reduce oxidative stress, neuroinflammation, and toxic protein aggregation demonstrate potential as innovative nanomedicines for overcoming the challenges associated with cell-based therapies in Parkinson's disease treatment. These bioactive nanomaterials offer a promising approach to address the limitations of current therapeutic strategies. Advanced nanodrug delivery systems are equipped to target ligands, which offer a sophisticated approach to support and expand stem cells for brain repair through controlled release of growth factors and other bioactive molecules, these can potentially enhance the efficacy of stem cell-based treatments. Improving the immunosuppression and cell delivery systems could make a change to reduce immunogenicity. Further development and clinical translation of cell sources needs to be improved to fully enable the potential of CRT. It's important to address the ethical and regulatory concerns by conducting large-scale clinical trials to establish long-term safety. Gene-editing technology can be improvised to correct the mutations in patient-specific iPSCs. Co-transplantation with supportive cell types can be a strategy to improve graft-survival. Another way to improve graftsurvival is cell encapsulation where a group of cells are entrapped in a spherical semipermeable membrane or bioengineered scaffolds. CRISPR/CAS 9 gene editing technology has been found to aid in developing animal models and the integration of this phenomena and stem cell based therapy could aid in identifying new paths for therapy and treatments of parkinson's disease.

II. CONCLUSION

Stem cell-based therapies, particularly cell replacement therapy (CRT), offer promising avenues for treating Parkinson's disease by potentially addressing the underlying neurodegeneration rather than merely managing symptoms. Various stem cell types, including embryonic stem cells, neural stem cells, mesenchymal stem cells, and induced pluripotent stem cells, have shown potential in preclinical studies. However, each cell type presents unique advantages and challenges, ranging from ethical concerns and tumor formation risks to limited

differentiation capacity and genetic instability. Future directions in this field should focus on personalizing treatments, combining CRT with emerging technologies like nanotechnology, and improving cell delivery systems and immunosuppression strategies. The development of nano-stem technologies and advanced drug delivery systems may enhance the efficacy of stem cellbased treatments while addressing current limitations. Despite the progress made, significant challenges remain in translating these therapies from bench to bedside. Continued research is crucial to improve the safety, efficacy, and reproducibility of CRT for Parkinson's disease. As our understanding of stem cell biology and Parkinson's disease pathophysiology advances, the potential for developing transformative treatments that can slow or halt disease progression becomes increasingly tangible, offering hope for millions of patients worldwide.

REFERENCES

[1] ---. "Stem Cell Therapy, the Market, the Opportunities and the Threat."

[2] PubMed, vol. 12, no. 3, Jan. 2023, pp. 310–19. <https://doi.org/10.22088/ijmcm.bums.12.3.310>. Dong, Yongqiang, et al. "Nanotechnology Shaping Stem Cell Therapy: Recent Advances, Application, Challenges, and Future Outlook."

[3] Biomedicine & Pharmacotherapy, vol. 137, Jan. 2021, p. 111236. <https://doi.org/10.1016/j.bioph.2021.111236>. Guo, Xiaoqian, et al. "Current Developments in Cell Replacement Therapy for Parkinson's Disease."

[4] Neuroscience, vol. 463, Mar. 2021, pp. 370–82. <https://doi.org/10.1016/j.neuroscience.2021.03.022>. Ghasroldasht, Mohammad Mousaei, et al. "Stem Cell Therapy: From Idea to Clinical Practice."

[5] International Journal of Molecular Sciences, vol. 23, no. 5, Mar. 2022, p. 2850. <https://doi.org/10.3390/ijms23052850>. Moy, Alan, et al. "The Challenges to Advancing Induced Pluripotent Stem Cell-Dependent Cell Replacement Therapy."

[6] Medical Research Archives, vol. 11, no. 11, Jan. 2023, <https://doi.org/10.18103/mra.v11i11.4784>. Nagpal, Anjali, et al.

[7] Value in Health, vol. 22, no. 2, Aug. 2018, pp. 254–62. <https://doi.org/10.1016/j.jval.2018.07.878>. Wijeyekoon, Ruwani, and Roger A. Barker. "Cell Replacement Therapy for Parkinson's Disease."

[8] Biochimica Et Biophysica Acta (BBA) - Molecular Basis of Disease, vol. 1792, no. 7, Oct. 2008, pp. 688–702. <https://doi.org/10.1016/j.bbadi.2008.10.007>. Xiao, Bin, et al. "Induced Pluripotent Stem Cells in Parkinson's Disease: Scientific and Clinical Challenges."

[9] Journal of Neurology Neurosurgery & Psychiatry, vol. 87, no. 7, Feb. 2016, pp. 697–702. <https://doi.org/10.1136/jnnp-2015-312036>. Yefroyev, David A., and Sha Jin. "Induced Pluripotent Stem Cells for Treatment of Alzheimer's and Parkinson's Diseases."

[10] Biomedicines, vol. 10, no. 2, Jan. 2022, p. 208. <https://doi.org/10.3390/biomedicines1002020>. Young, Henry E. "Treating Parkinson Disease With Adult Stem Cells."

[11] Journal of Neurological Disorders, vol. 01, no. 02, Jan. 2013, <https://doi.org/10.4172/2329-6895.1000121>. Zeng, Xinlin, and Hua Qin. "Stem Cell Transplantation for Parkinson's Disease: Current Challenges and Perspectives."

[12] Aging and Disease, vol. 13, no. 6, Jan. 2022, p. 1652. <https://doi.org/10.14336/ad.2022.0312>. Qarin, Shamma, et al. "The Immunogenicity of Midbrain Dopaminergic Neurons and the Implications for Neural Grafting Trials in Parkinson's Disease."

[13] Neuronal Signaling, vol. 5, no. 3, Aug. 2021, <https://doi.org/10.1042/ns20200083>. Oz, Tuba, et al. "Neural Stem Cells for Parkinson's Disease Management: Challenges, Nanobased Support, and Prospects."

[14] World Journal of Stem Cells, vol. 15, no. 7, July 2023, pp. 687–700. <https://doi.org/10.4252/wjsc.v15.i7.687>. Umer, A., Ghouri, M. D., Muyizere, T., Aqib, R. M., Muhamymin, A., Cai, R., & Chen, C. (2023). Engineered Nano–Bio interfaces for stem cell therapy. In

[15] Precis. Chem. (pp. 341–356).

"Economic Evaluation of Stem Cell Therapies in Neurological Diseases: A Systematic Review."

<https://doi.org/10.1021/prechem.3c00056De>
Luzy, Isabelle R., et al. "Human Stem Cells Harboring a Suicide Gene Improve the Safety and Standardisation of Neural Transplants in Parkinsonian Rats."

[16] Nature Communications, vol. 12, no. 1, May 2021, <https://doi.org/10.1038/s41467-021-23125-9>. Parish, Clare L., and Lachlan H. Thompson. "Embryonic Stem Cells Go From Bench to Bedside for Parkinson's Disease." Cell Reports Medicine, vol. 2, no. 4, Apr. 2021, p. 100251.
<https://doi.org/10.1016/j.xcrm.2021.100251>. Heris, Reza Mosaddeghi, et al. "The Potential Use of Mesenchymal Stem Cells and Their Exosomes in Parkinson's Disease Treatment."

[17] Stem Cell Research & Therapy, vol. 13, no. 1, July 2022, <https://doi.org/10.1186/s13287-022-03050-4>. Cohen-Adad, Julien, and Claudia Wheeler-Kingshott.

[18] Quantitative MRI of the Spinal Cord. Academic Press, 2014. Pinjala, Poojitha, et al. "CRISPR/Cas9 Assisted Stem Cell Therapy in Parkinson's Disease."

[19] Biomaterials Research, vol. 27, no. 1, Feb. 2023, <https://doi.org/10.1186/s40824-023-00381-y>. Hoang, Duc M., et al. "Stem Cell-based Therapy for Human Diseases."

[20] Signal Transduction and Targeted Therapy, vol. 7, no. 1, Aug. 2022, <https://doi.org/10.1038/s41392-022-01134-4>. Hoang, D.M., Pham, P.T., Bach, T.Q.

[21] et al. Stem cell-based therapy for human diseases. *Sig Transduct Target Ther* 7, 272 (2022). <https://doi.org/10.1038/s41392022-01134-4>. Margiana, R., Markov, A., Zekiy, A.O.

[22] et al. Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review. *Stem Cell Res Ther* 13, 366 (2022). <https://doi.org/10.1186/s13287-022-03054-0>. Pathak, Surajit, and Antara Banerjee.

[23] Cancer Stem Cells: New Horizons in Cancer Therapies. Springer Nature, 2020. Aly, Riham Mohamed. "Current state of stem cell-based therapies: an overview."

[24] Stem cell investigation vol. 7 8. 15 May. 2020, doi:10.21037/sci2020-001Xiao, Zhuangzhuang, et al. "The Potential Therapy With Dental Tissue-derived Mesenchymal Stem Cells in Parkinson's Disease."

[25] Stem Cell Research & Therapy, vol. 12, no. 1, Jan. 2021, <https://doi.org/10.1186/s13287-020-01957-4>. Zare, Sona, et al. "Types of Stem Cells in Regenerative Medicine: A Review."

[26] Journal of Skin and Stem Cell, vol. 1, no. 3, Dec. 2014, <https://doi.org/10.17795/jssc28471>. Zakrzewski, Wojciech, et al. "Stem Cells: Past, Present, and Future."

[27] Stem Cell Research & Therapy, vol. 10, no. 1, Feb. 2019, <https://doi.org/10.1186/s13287-019-1165-5>. Larijani, Bagher et al. "Stem cell therapy in treatment of different diseases." *Acta medica Iranica* vol. 50,2 (2012): 79-96.

[28] Kim, Seung U., et al. "Neural Stem Cell-based Treatment for Neurodegenerative Diseases."

[29] Neuropathology, vol. 33, no. 5, Feb. 2013, pp. 491–504.
<https://doi.org/10.1111/neup.12020>. Kalra, K., and P. C. Tomar. "Stem Cell: Basics, Classification and Applications."

[30] American Journal of Phytomedicine and Clinical Therapeutics, vol. 2, no. 7, July 2014, pp. 919–30. ---. "Clinical Application of Mesenchymal Stem Cell in Regenerative Medicine: A Narrative Review."

[31] Stem Cell Research & Therapy, vol. 13, no. 1, July 2022, <https://doi.org/10.1186/s13287-022-03054-0>. ---. "Role of Human Mesenchymal Stem Cells in Regenerative Therapy." *Cells*, vol. 10, no. 1, Dec. 2020, p. 54.

[32] <https://doi.org/10.3390/cells10010054>. Tian, Zeyu, et al. "Introduction to Stem Cells."

[33] Progress in Molecular Biology and Translational Science, Jan. 2023, pp. 3–32. <https://doi.org/10.1016/bs.pmbts.2023.02.012>. Kolios, George, and Yuben Moodley. "Introduction to Stem Cells and Regenerative Medicine."

[34] Respiration, vol. 85, no. 1, Dec. 2012, pp. 3–10. <https://doi.org/10.1159/000345615>. Anjum, Anam et al. "Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms." *International journal of molecular sciences* vol. 21,20 7533. 13 Oct. 2020, doi:10.3390/ijms21207533 17.

[35] Edgar, L., et al. "Regenerative Medicine, Organ Bioengineering and Transplantation."

[36] British Journal of Surgery, vol. 107, no. 7, May 2020, pp. 793–800.

<https://doi.org/10.1002/bjs.11686>. Yamada, Satsuki et al. “Regenerative medicine clinical readiness.” *Regenerative medicine* vol. 16,3 (2021): 309-322. doi:10.2217/rme-2020- 0178 19.

[37] ---. “Introduction to Stem Cells and Regenerative Medicine.” 39. *Respiration*, vol. 85, no. 1, Dec. 2012, pp. 3–10. <https://doi.org/10.1159/000345615>.---. “Evolving Trends in Stem Cell Therapy: An Emerging and Promising Approach Against Various Diseases.”

[38] *International Journal of Surgery*, vol. 110, no. 11, July 2024, pp. 6862–68. <https://doi.org/10.1097/jjs.000000000000194>

8.---. “Stem Cell Therapy, the Market, the Opportunities and the Threat.”

[39] *PubMed*, vol. 12, no. 3, Jan. 2023, pp. 310–19. <https://doi.org/10.22088/ijmcm.bums.12.3.310>

.Shi, Jinjun, et al. “Nanotechnology in Drug Delivery and Tissue Engineering: From Discovery to Applications.”

[40] *Nano Letters*, vol. 10, no. 9, Aug. 2010, pp. 3223–30. <https://doi.org/10.1021/nl102184c>.--. “Key Challenges in Bringing CRISPR-mediated Somatic Cell Therapy Into the Clinic.”

[41] *Genome Medicine*, vol. 9, no. 1, Sept. 2017, <https://doi.org/10.1186/s13073-017-0475-4>.---. “The Immunogenicity of Midbrain Dopaminergic Neurons and the Implications for Neural

[42] *Grafting Trials in Parkinson’s Disease.” Neuronal Signaling*, vol. 5, no. 3, Aug. 2021, <https://doi.org/10.1042/ns20200083>.