
© FEB 2026 | IRE Journals | Volume 9 Issue 8 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I8-1714243

IRE 1714243 ICONIC RESEARCH AND ENGINEERING JOURNALS 854

Secure and Unified AI – Blockchain Voting System with

Real Time Verification

J. INDRA SIBI1, B. SHANMUGA SUNDARI2, M. ELZA MELIF3
1PG Student, Department of CSE, PET Engineering College,Vallioor

2, 3Assistant Professor, Department of CSE, PET Engineering College, Vallioor

Abstract- Online voting for independent elections is

generally supported by trusted election providers. Typically

these providers do not offer any way in which a voter can

verify their vote, and hence the providers are trusted with

ballot privacy and in ensuring correctness. Despite the

desire to offer online voting for political elections, this lack

of transparency and verifiability is often seen as a

significant barrier to the large-scale adoption of online

elections. Adding verifiability to an online election

increases transparency and integrity, as well as allowing

voters to verify that the vote they cast has been recorded

correctly and included in the tally. However, replacing

existing online systems with those that provide verifiable

voting requires new algorithms and code to be deployed,

and this presents a significant business risk to commercial

election providers, as well as the societal risk for official

elections selecting for public office. In this paper we

present the first step in an incremental approach which

minimizes the business risk but demonstrates the

advantages of verifiability, by developing an

implementation of key elements of a Selene-based

verifiability layer and adding it to an operational online

voting system. Selene is a verifiable voting protocol that

publishes votes in plain text alongside a voter’s tracker.

These trackers enable voters to confirm that their votes

have been captured correctly by the system, such that the

election provider does not know which tracker has been

allocated to which voter. This results in a system where

even a “dishonest but cautious” election authority running

the system cannot be sure of changing the result in an

undetectable way, and hence gives stronger guarantees on

the integrity of the election than were previously present.

We explore the challenges presented by adding a

verifiability layer to an operational system. The system was

used in two initial trials conducted within real contested

elections. We conclude by outlining the further steps in the

road-map towards the deployment of a fully trustworthy

online voting system.

I. INTRODUCTION

A significant problem with the traditional voting

systems is the vulnerability to manipulation, security

breaches, and inefficiencies that undermine the

fairness, transparency, and integrity of the electoral

process. One major issue is voter impersonation and

fraud, where unauthorized individuals may cast votes

under false identities[1] . This is a common challenge

in regions with weak authentication mechanisms or

poorly managed voter registration processes. Even in

electronic voting systems, the lack of robust

verification techniques often exposes the process to

fraud and manipulation, which compromises the

credibility of election results[2]. Another concern is

the lack of transparency in vote counting, where

manual or semi-automated systems introduce the

possibility of human error or deliberate tampering.

This raises doubts among voters about whether their

votes are accurately counted, especially in close

elections where every vote matters. Additionally, the

lack of standardization across different regions and

states introduces complexities and inefficiencies in

managing elections, leading to inconsistencies in

election procedures and results[3]. Finally, voters

often have no way of verifying whether their vote has

been correctly cast and recorded. Without mechanisms

to allow individuals to check the status or integrity of

their vote, concerns about vote tampering or errors

persist. This problem is further compounded by the

growing threat of cyber-attacks and unauthorized

access to voting systems, which can manipulate or

steal voter data, ultimately affecting the election

outcome[4]. This project aims to tackle these issues by

leveraging blockchain technology for secure,

transparent, and immutable vote storage, along with

AI-driven facial recognition for robust voter

authentication. The use of blockchain ensures that

once a vote is cast, it cannot be tampered with,

providing an unprecedented level of trust and security.

The integration of AI for face recognition adds an extra

layer of protection against fraud and identity theft,

while ensuring that voters can be easily and accurately

verified[5]. The aim of the project is to design and

© FEB 2026 | IRE Journals | Volume 9 Issue 8 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I8-1714243

IRE 1714243 ICONIC RESEARCH AND ENGINEERING JOURNALS 855

implement a secure, transparent, and efficient

blockchain-based electronic voting system that

integrates multi-level authentication mechanisms,

including QR codes and CNN-based face recognition

linked to Aadhaar, to ensure accurate voter

identification, tamper-proof vote storage, and real-

time result verification, thereby addressing the

limitations of existing voting systems[6]. The project

leverages advanced technologies such as QR codes

and CNN-based face recognition linked to Aadhaar for

multi-level voter authentication[7]. This ensures

accurate voter identification and prevents

unauthorized access. Blockchain technology further

enhances security by encrypting and immutably

storing votes using 256-bit SHA hash codes,

safeguarding the electoral process against

tampering.By integrating blockchain's immutable

ledger, the system ensures that votes remain unaltered

and traceable[8]. A Vote Integrity Verifier Link

notification system alerts voters of any tampering

attempts, allowing real-time verification of their vote’s

authenticity[9]. The project introduces a unified

electronic voting platform to standardize elections

across all Indian states. and management, improving

the overall efficiency of the electoral process[10].

II. LITERATURE SURVEY

Secure Online Voting System-Based on Facial

Recognition by Using Deep Learning , Krishna

Prakash; Nimmagaddda Vatsalya Mitra; Nallamothu

Pavan Kumar; Manda Anji Babu; Shonak Bansal;

Sandeep Kumar invented in 2025.The objective of this

study is to design and implement a secure, reliable, and

transparent online voting system for corporate

elections by integrating deep learning–based facial

recognition and OTP authentication to eliminate

fraudulent voting and unauthorized access. The

proposed system combines computer vision and deep

learning techniques for identity verification and secure

voting. It uses employee-specific identifiers such as

employee ID and biometric credentials to authenticate

users. The voting process is protected with OTP-based

verification, and all votes are validated in real-time to

ensure transparency and security.The system employs

Haar Cascade Classifier for fast and efficient face

detection and Convolutional Neural Networks (CNNs)

for high-accuracy facial recognition and verification.

The combination ensures quick processing with strong

authentication accuracy[1].

A Comprehensive Evaluation of Secured Electronic

Voting System Design Based on Face Biometric

Authentication Policy, Pandarinath Potluri; R.

Jayakarthik; Shivam Agarwal; Shobana S; Venkata

Padmavathi S; Aarthi R invented in 2024. The main

objective of this study is to design a secure,

transparent, and efficient electronic voting system that

leverages face biometric authentication to ensure voter

identity verification and prevent electoral fraud. The

proposed system integrates both hardware and

software components, including cameras for facial

capture, a biometric database, and encryption-based

communication protocols. Deep learning-based face

detection and recognition algorithms are implemented

along with anti-spoofing and multi-factor

authentication mechanisms. The architecture covers

voter registration, ballot generation, secure vote

casting, and encrypted vote counting.Deep learning

algorithms for face detection and recognition,

supported by anti-spoofing and encryption techniques,

form the core of the system[2].

Enhancing the Security of Online Voting System

Using Defined Biometrics, Devanshi Malik; Kritika

Tripathi; Jyotsna invented in 2023. The objective of

this study is to develop a secure, efficient, and user-

friendly online voting system that eliminates the

shortcomings of manual voting by integrating

biometric and multi-step verification mechanisms.The

proposed web-based system employs Aadhaar

verification, biometric fingerprint scanning, and two-

step authentication for voter validation[3].

Coercion-Resistant E-Voting Scheme with Blind

Signatures, Ahsan Aziz he found in 2019. This project

is an e-voting scheme based on blind signatures which

fulfils important security requirements and is efficient

too.An ideal e-voting system would allow users to go

online, using web-browser or a phone application,

enter their credentials and vote; it would also allow

voters to verify their votes after election. The

properties that make e-voting such a promising

technology also raise potential privacy and efficiency

problems. In literature, researchers have listed the

requirements which an e-voting scheme must have.

Many e-voting schemes have been proposed which are

© FEB 2026 | IRE Journals | Volume 9 Issue 8 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I8-1714243

IRE 1714243 ICONIC RESEARCH AND ENGINEERING JOURNALS 856

based on combination of cryptographic tools, however

some schemes have efficiency problems, voter or

election authority does a lot of processing at their end,

and some do not fulfil all security requirements[4] .

III. EXISTING SYSTEM

The existing voting systems predominantly rely on

traditional methods such as paper ballots and

electronic voting machines (EVMs). While these

systems have served for decades, they present

significant limitations that impact the integrity,

efficiency, and inclusivity of the electoral process.

Paper-Based Voting

Paper ballots, one of the oldest voting methods, are

still used in certain regions due to their simplicity.

However, this system is prone to errors in vote

counting and is labor-intensive, resulting in delays in

result announcements. Furthermore, paper ballots are

vulnerable to tampering, which compromises election

fairness[11].

Electronic Voting Machines (EVMs) EVMs were

introduced to address the inefficiencies of paper-based

voting by providing faster and more accurate vote

counting. However, these machines face challenges

such as limited voter verification mechanisms and

centralized vote storage, which can raise concerns

about data security and trust[12].

DISADVANTAGES

1)Risk of tampering and data breaches in both paper

ballots and EVMs.

2)Manual counting and centralized systems delay

result announcements.

IV. PROPOSED SYSTEM

The proposed system is designed to overcome the

limitations of traditional voting methods. By

integrating cutting-edge technologies such as

blockchain, facial recognition, and multi-level

authentication, this system aims to ensure a more

secure, efficient, and transparent electoral process.

1)Multi-Level Authentication for Voter Security

The system incorporates multi-level authentication,

using QR codes and facial recognition powered by

Convolutional Neural Networks (CNN). This method

links voter identity with Aadhaar for precise

verification, enhancing security and minimizing the

possibility of identity fraud or voter impersonation.

2)Blockchain Technology Integration

 The use of blockchain technology in the proposed

system ensures that votes are encrypted and securely

stored, guaranteeing immutability and preventing

tampering. Each vote is traceable, and any

unauthorized changes are immediately detected,

triggering an alert system to ensure the integrity of the

election process.

3)Self-Tallying Vote Mechanism

A key feature of the system is its self-tallying

mechanism, which automatically counts the votes at

the end of the election day. This eliminates the need

for manual vote counting, resulting in faster and more

accurate results. Additionally, the self-tallying system

allows for same-day result announcements, improving

the efficiency of the election process.

Advantages

1)Blockchain ensures immutability and protects votes

from tampering.

2)Self-tallying mechanism enables same-day vote

counting and results.

3)Facial recognition and Aadhaar ensure secure voter

identification.

V. SYSTEM ARCHITECTURE

As described, our approach is to enhance an existing

system with a verifiability layer in order to understand

how such systems can be improved. Having chosen

Selene as a suitable protocol to provide verifiability, in

this section we describe both the existing system and

how Selene is layered over it.

© FEB 2026 | IRE Journals | Volume 9 Issue 8 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I8-1714243

IRE 1714243 ICONIC RESEARCH AND ENGINEERING JOURNALS 857

Fig 5.1 System Architecture

A.Legacy System

Our chosen commercial partners are CES, who run a

signif- icant number of elections within the U.K. using

a web-based voting system. Their system allows for

online, postal and tele- phone voting to take place for

up to hundreds of thousands of voters, with all cast

ballots recorded in a relational database secure web

service operating from their data centres on Microsoft

Windows servers[13]. When an election is to be run, CES

receive details of the election type, voters, materials

needed to be released to voters, such as candidate

information, and tallying rules. Each election may

consist of multiple races (different questions upon

which each voter may vote). These data are then used to

provision a suitable section of the CES web service

which can be accessed by voters using their credentials

when voting is opened[14]. The database contains a

list of all of the voters, their credentials and record of

their vote (empty prior to voting). When voting is

opened, voters receive their security creden- tials

which enable them to log into the web service via any

supported browser using HTTPS and cast their ballot.

These credentials may be received via email or by

post. Once a voter has cast their ballot, the

corresponding database table is updated to contain the

plaintext (machine readable) vote for every race in

which the voter has voted. Postal and telephone votes

may be received for certain elections, in which case the

corresponding votes are recorded within the same

database table by customer service

representatives[15]. Furthermore, it is possible for a

voter to cancel their vote, say by telephone, in order to

re-vote if they wish. At the end of the election, the

tallying rules are applied to the collected votes and the

results released to the commissioning organisation.

CES do not make the election results public as it is

the responsibility of the organisation to release the

results depending upon their own rules. This system

therefore places complete trust within CES to run the

election[16] . This includes notifying all voters,

providing the election materials and credentials,

maintaining the integrity of the collected votes, tallying

the votes using the correct rules, and releasing the

corresponding results to the commissioning

organisation [17]. Since votes are held in plaintext and

there is no way for a voter to verify their vote, trust is

placed in the security of the system and the integrity of

the staff. The use of plaintext votes is integral to the

system in order to perform the tally[18].

B.Design

In implementing a verifiability layer with Selene, there

are two overriding requirements: 1) to provide

individual and universal verifiability of the election,

and 2) to ensure that the established system remains

intact in case the verifiability layer fails. This latter

requirement is driven by business need: when

operating a large-scale, commercial election which is

trialling experimental software, there must be a

mechanism whereby the election can be easily

recovered without loss of data. Indeed this requirement

dictates that the storage of plaintext votes and existing

tallying mechanism remain as-is while the software is at

the experimental stage and undergoing trials[18]. Yet

despite this, by adding voter verification and

publishing the election results publicly, the election

becomes transparent and, importantly, verification is

able to expose any malicious change in the election

result, thus reducing the required trust in the election

provider[19]. Once the experimental software is

proven and made sufficiently robust for production use,

then the requirement to maintain the existing system is

removed. As a consequence, in order to impact the least

on the existing system, the design enforces the

separation of the CES and VMV software, which is

achieved simply by interfacing VMV via the relational

database, which holds all of the plaintext votes, and by

providing a separate user interface for vote verification

and election auditing[20]. By keeping the votes in

plaintext within the CES system, and then adding

verifiability to the voter record and their plaintext vote,

the impact on the system is minimised because neither

the voter user interface or processing need to change,

© FEB 2026 | IRE Journals | Volume 9 Issue 8 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I8-1714243

IRE 1714243 ICONIC RESEARCH AND ENGINEERING JOURNALS 858

while the desired verifiability can be added. Nonethe-

less, this compromise means that the existing lack of

end-to- end privacy of votes within the CES system

continues at this stage. The separated VMV software

architecture is shown in Fig. 2, which shows the

relationship between the additional components and

the CES system[21]. The components in the archi-

tecture are:Voting Web Service The existing CES e-

voting system which operates without change except

to provide additional infor- mation to voters to allow

them to verify their vote. Vote Database The existing

CES relational database holding all details about an

election, voters and their plaintext vote (once a ballot has

been cast). This is modified to add in the verifiability data

per voter and is used as the input and output interface

for VMV through the import and export of comma-

separated values (CSV) data files. CES Network The

secure network within which the Voting Web Service

and Vote Database are held. Public access is only

granted to the Voting Web Service within this network

via HTTPS (and to vote only with credentials)[22].

Since the Selene Layer accesses voter and vote data, it

is also run within the CES Network to ensure that all

private data is kept securely within the network.

Selene Layer Executes the Selene protocol by taking

data from the Vote Database as CSV files,

communicating with the Verificatum Nodes to perform

shuffling and decryption, and with the Verification Web

Service to publish verification data, including produced

CSV and NIZKPoK proof files. These operations are

initiated by an administrator using a computer running

within the CES Network. Verificatum A series of

independently-operated nodes running the Verificatum

software. Two or more independent organ- isations can

run a Verificatum Node which is initialised by the

Selene Layer. Each Verificatum Node can

communicate with each other node within the Mix-net

Network[22]. Prior to a mix-net operation, such as

shuffling, each node is supplied with identical CSV

input and produces identical CSV output together with

the corresponding proof . Mix-net Network Each

Verificatum Node is run within its own secure network

hosted by each independent organisation. Access to

each Verificatum Node is only granted to the other

Verificatum Nodes and the Selene Layer, which

controls the Verificatum operations. Verification Web

Service A web service with a user interface which

allows administrators to publish verification data, au-

ditors to view the published election data and voters to

verify their vote[23]. This forms the public face of the

VMV demonstra- tor and allows published files to be

served to users. Publication requires privileged access

granted to administrators via user accounts. Only

administrators have accounts, while anyone can view

published data. Verification Database Holds the data

necessary to run the Ver- ification Web Service,

including administrator user accounts and an index of

each election’s verification data. This includes the list of

the CSV and proof files held in the Data Lake, and

their corresponding contract addresses in the Quorum

cluster, such that they can be retrieved via the

Verification Web Service[24]. Data Lake Holds the

published CSV and NIZKPoK proof files in a

repository which is only accessed via the Verification

Web Service. Verification Network A secure network in

which the Verification Web Service and Data Lake

operate. Public access is only granted to the

Verification Web Service within this network via

HTTPS. Quorum Node A series of independently-

operated nodes run- ning the Quorum software, a

particular Distributed Ledger Technology [9]. Two or

more independent organisations can each run one or

more Quorum Nodes. Each Quorum Node can

communicate with each other node within the DLT

Network. When a file is published via the Verification

Web Service, it is saved to the Data Lake and a hash of

the file is committed to the Quorum cluster.

Periodically, the hash is verified against the file held in

the Data Lake to ensure its integrity. All data held

within the Vote Database, Verification Database, Data

Lake, Verificatum Nodes and Quorum Nodes should

be held resiliently such that they are backed up to

prevent data loss. For example, each Verificatum Node

holds privately within its file system its share of the

election private key skTi Verificatum was chosen as the

preferred mix-net implementation because it is open

source, has worked successfully in a number of large-

scale elections, has a proven cryptographic protocol,

works well with ElGamal encryption and produces the

desired NIZKPoK for each operation. The Verificatum

Nodes within the mix-net require a threshold number of

the nodes to perform cryptographic operations. The

number of nodes within the mix-net and the number

required for a threshold is configurable when the mix-

net is created. For example, four Verificatum Nodes can

be run such that a threshold of three of them is needed

to operate[25]. This allows for one (and only one) node

© FEB 2026 | IRE Journals | Volume 9 Issue 8 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I8-1714243

IRE 1714243 ICONIC RESEARCH AND ENGINEERING JOURNALS 859

to be removed from the mix-net for it to still be able to

operate. If less than the threshold number of

Verificatum Nodes is available, then no mix-net

operations can take place. Nodes may be removed from

the mix-net through failure or if the operator of the node

is thought to be compromised or malicious. Similarly

for the Quorum cluster. Quorum was chosen as it is

open source (based upon Ethereum [19]) and being

developed as an enterprise-ready DLT solution by J.P.

Morgan [9], ensuring that it is sufficiently robust for

commercial operation. The sequence of interactions

between the components is shown in Fig. 3, and the

following provides detail on each stage of operation,

describing the various design choices associated with

each component, while relating to the Selene

protocol in Section II.

C.Setup

Once the election has been defined by CES, and the

number of voters quantified, then the Selene Layer can

be used to set up the election verifiability parameters.

The first stage is to initialise the cryptographic

parameters (Selene: Create Params) which will be

used to create the corresponding encryption and

signing keys (Section II-A). For example, this includes

the cyclic group G with order p, and the associated

generator g. Once this has been done, the election key

pair can be created. Recall that in Selene, the election

encryption key pair is created by the mix-net so that

shares of the private key skTi are distributed across the

mix-net nodes i, while the public key pkT is available

for third-parties to encrypt data. In Verificatum, each

node in the mix-net is initialised with data relevant to

the election, including the cryptographic parameters,

election name, and the IP address of each Verificatum

Node in the mix-net (Selene: Create Mix-net). For

convenience, a copy of the Selene Layer software is

used on each Verificatum Node to run the Verificatum

commands necessary to initialise the local files (Mix-

net: Create)[26]. When this has been completed, the

Selene Layer is used (Selene: Election Key) to

create the election key pair (Mix-net: Create Key).

During key pair creation, each Verificatum node

communicates with each other node to form a

consensus on the key and ensure that each has a share

of the private key (with each share remaining private to

the node). We now turn to our first challenge in the

Selene proto- col (Section II-F1) where Selene

assumes that all voters have their own encryption and

signing keys initialised from suitable cryptographic

parameters[27]. In VMV voters do not have their own

keys, even though the keys are assumed to be available

to complete the Selene protocol. In an ideal scenario,

each voter would have their own keys either allocated

to them via organisational or national infrastructure, or

they would be able to generate and store them securely

themselves. This is not the case for the CES system,

and hence during the setup of the election, the

encryption (ski, pki) and signing keys for all of the

voters are generated for them (Selene: Voters Keys)

by taking from the CES system the number of voters

in the election (CES: Number of Voters). This is an

unavoidable compromise in the protocol which means

that the Selene Layer holds all of the keys for the voters

and is therefore a trusted party. However, while the

Selene Layer holds both the private and public keys

for the voters, the private keys are not shared with the

CES system so that it is not possible for CES staff to

encrypt and sign votes only the Selene Layer can do

this. Once all of the keys have been generated, the next

stage is to create the trackers (Selene: Create Trackers).

Random trackers are created (enough for every voter),

which are then mapped to a number in the cyclic group

G and encrypted using the election public key pkT

(Section II-A). These encrypted values are then

shuffled (Selene: Shuffle Trackers) using the mix-net

(Mix- net: Shuffle) so that there is no correspondence

between the input and output encrypted trackers from

the mix-net. A longside the trackers, the first part of

their commitments, β, (Selene: Create β) are then

generated (Section II-B) by first re- questing that every

Verificatum Node generates a random value r for each

voter (Mix-net: Randomise)[28]. This random number

generation is not part of Verificatum and is instead

completed by the controlling Selene Layer on each

node. These random values are then combined in

encrypted form and transformed to be one half of the

ciphertext of the tracker encrypted under each voter’s

public key pki, as described in Equation 2. The value gr

is also held privately by the node. This process also

involves the decryption of data by the mix-net but for

simplicity, we omit the details here as the process is

fully described in [29].The last stage of the election

setup is to allocate each voter their encryption and

signature key pairs, an encrypted tracker and the

corresponding β. CES is then provided with this data

(Selene: Save Data) to store in the Vote Database (CES:

© FEB 2026 | IRE Journals | Volume 9 Issue 8 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I8-1714243

IRE 1714243 ICONIC RESEARCH AND ENGINEERING JOURNALS 860

Keys and β) against each voter (without the private

keys). All of the public data is then sent to the

Verification Web Service for publication (Verification:

Publish). During publication, the Verification Web

Service saves each of the supplied CSV and proof files

to the Data Lake (Data Lake: Add Files) then

calculates a SHA-256 hash of each file and then

commits this hash to the Quorum cluster (Quorum:

Add Hashes)[30]. Once committed, the files are made

available for public viewing by the Verification Web

Service (Verification: Verify Election and Vote Status),

which allows files to be retrieved (Data Lake: Hold

and View Files) and periodically checks the

correspond- ing hashes against the contract in Quorum

(Quorum: Verify Hashes). Our choice of using a Data

Lake is motivated by the size of the files that are

generated. With, for example, keys with 3027 bits, a

voter record (3) consists of approximately 4000 bytes,

so that with 1000 voters, the corresponding data file is

just under 4 MB and 100,000 voters 400 MB. While

Quorum is designed to immutably store data, the larger

the amount of data that needs storing, the longer the

required consensus protocols take to run across the

Quorum Nodes. Consequently, a Data Lake is used to

hold the files, which can then be of arbitrary size,

while the Quorum cluster only holds a hash of each

file. If any file is changed, its hash will therefore not

match to that which is stored in Quorum. While this is

not ideal since it requires the hash to be checked when

retrieving any file to ensure its integrity, it is more

practical without compromising on the immutability of

the files and allowing independent verification of the

hashes. Data is committed to the Quorum cluster using

the notion of a ‘contract’. A contract is similar in

concept to an object in an object-oriented

programming language. Each contract template is

written using the Solidity [31] language, encapsulating

data and methods which operate on the data. To

commit data to the Quorum cluster, the compiled

contract is loaded and a new instance created with the

required data and/or methods executed. The contract is

then committed to all nodes in the cluster through a

consensus protocol so that it is written to the blockchain.

Once committed, the address of the contract is

returned, and this can be used to retrieve the contact

and its data. Once all of the data for this stage has been

published, anyone can view the public data for the

election via the Verification Web Service (Verification:

Verify Election and Vote Status). As part of the email

sent out by CES to all voters with their security

credentials, each voter is also sent their β value. This

can be used by the voter to verify that their β exists

within the verification data (their ‘Vote Status’). This

therefore enables any interested third-party to verify,

for example, the number of voters, that every voter has

a unique β, and to also independently verify all of the

NIZKPoK.

D.Voting

Once the setup is complete, CES may open the election

for voting. Here, the CES system remains unchanged

in that voters use their security credentials to login to

the Voting Web Service (via HTTPS) and submit their

vote (CES: Voting). Each vote is recorded in plaintext

within the Vote Database. CES also allow voters to

cancel their votes via telephone, and then to re-vote.

Here we face two challenges presented by Selene

which assumes the end-to-end encryption of votes

(Section II-C). First, votes are not end-to-end encrypted

since voters submit their vote in plaintext which is then

recorded in the database (Section II-F2). As discussed,

this means that CES are trusted to maintain the privacy

of votes, but this was required to allow the CES system

to remain intact and recoverable in the event of a failure

in VMV. However it would be a straightforward

adaptation of the system to receive and manage only

encrypted votes. Second, votes are not recorded in real-

time to the Quorum cluster (Section II-F3).

E.Verification

Once the election period has ended and voting closed,

the final set of verification data may be generated and

the tally performed. First, all of the plaintext votes are

exported from the Vote Database (CES: Plaintext

Votes). This is only done within the CES Network so

that the plaintext votes are never compromised.

Alongside the plaintext votes, the public keys and

encrypted trackers stored within the Vote Database for

each voter are also exported within the CSV file. This

enables the Selene Layer to find the corresponding

private signature key for each voter. In order to encrypt

all of the plaintext votes, we must now overcome the

limitation of ElGamal which can only be used to

encrypt numbers within the cyclic group G (Section II-

F4). This can either be overcome by first supplying a

complete list of all possible plaintext votes, or by

finding all distinct votes which have been cast. The

former is possible where production of the list of

© FEB 2026 | IRE Journals | Volume 9 Issue 8 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I8-1714243

IRE 1714243 ICONIC RESEARCH AND ENGINEERING JOURNALS 861

distinct plaintext votes is tractable, such as for yes/no

votes or similar, but which becomes too time-

consuming in preferential voting with lots of

candidates. The latter can then be used to find all

distinct votes from those that have been cast, which at

the worst case will be as many as there are ballots cast.

Once a list of distinct votes has been generated, each

can be mapped to a unique number in the cyclic group

for encryption. For example, for every vote option, a

unique random number vi is generated which can be

mapped into a number within the cyclic group G with

generator g to yield

Vi = gvi
mod p

where p is the prime order of the group. With all of the

votes mapped, the Selene Layer is then used to encrypt

and sign the votes for each voter (Selene: Encrypt and

Sign Votes) to produce the completed vote record (3).

This includes the proof of correct encryption. Votes are

signed using the Digital Signature Algorithm (DSA)

[32]. The encrypted tracker and encrypted vote tuples for

each voter are then extracted for mixing (Section II-D).

Each Verificatum Node receives the list of tuples

(Selene: Mix Votes) and is in- structed to mix them

(Mix-net: Mix). This performs a shuffle of the tuples

before decryption. The result is a list of tuples holding

the plaintext tracker in the cyclic group and the

corresponding plaintext vote. The trackers in the cyclic

group are then mapped back to the trackers (5). The

final stage of the Selene protocol is to enable voters to

calculate their tracker by supplying them each with

their ran dom values gri,j held by the Verificatum

Nodes. Unfortunately, providing each independent

Verificatum Node with a means to form a secure

channel to every voter is not practical, as this would

require some form of identifying information to be given

to each node (such as an email address or credentials for a

voter to access the node securely). Here then we address

this challenge (Section II-F5) by focusing instead on the

end result, namely providing each voter with their αi

commitment. In Selene, the concept is that each voter

must generate their αi from the random values

provided to them. In some way this allows the voter

to avoid coercion supposedly because they cannot be

forced to reveal their true αi, and can instead generate

an alternative αt which points to a different vote

record. To achieve this, the values must be sent

securely, and the voter must have the necessary

software needed to calculate their αi or an alternative.

Both of these impose constraints on the voter which

detract from their experience and make verification

more difficult. Our approach is to assume that the voter

can receive their αi directly without having access to

their random values. This does increase the risk of

coercion, but prevents the distribution of personal data

to the Verificatum Nodes[33]. Here then instead, each

Verificatum Node shares the random values with the

Selene Layer running within the CES Network (Mix-

net: Randoms), which then calculates the α values

(Selene: Create α). The α values can then be

distributed by CES to the voters without revealing any

personal data to VMV. The encrypted vote,

corresponding signature and α are pro- vided to CES

(Selene: Save Data) to store in the Vote Database (CES:

Encrypted Votes and α), and so that the α can be

provided to each voter once the tally has been

completed (CES: Tally). This is achieved by sending

them an email with their α and β embedded within it,

together with instructions on how to verify their vote.

Here also, all of the public data is then sent to the

Verifica- tion Web Service for publication (Verification:

Publish). Once committed, the files are made available

for public viewing by the Verification Web Service

(Verification: Verify Election and Vote

Status/Vote).Software Environment The

implementation of the VMV demon- strator consists of

five software environments:CES The CES software

runs intact on Microsoft Windows servers in their data

centres.The interface with VMV is through the import

and export of CSV files from the Vote Database.

Selene and Verificatum For portability, the Selene

Layer was built in Java, using the Bouncy Castle

cryptographic API . Verificatum is also built using Java .

By using Java, both pieces of software can be run on

Windows or Linux servers providing flexibility for

deployment, while Java also provides strong support for

cryptography. Quorum Quorum is written in Go and

can be deployed to Linux servers. Verification The

Verification Web Service was built using Ruby- on-Rails

to support rapid application development of a web

service which requires both a user interface and an

underlying infrastructure that supports the Data Lake

and access to Quorum. A web service can therefore be

accessed by any internet-enabled computer and a

suitable web browser, and promotes the use of best-

practice guidelines for the de- velopment of user

interfaces to promote a good voter experi- ence. The

web service can be run on Linux servers with the Data

© FEB 2026 | IRE Journals | Volume 9 Issue 8 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I8-1714243

IRE 1714243 ICONIC RESEARCH AND ENGINEERING JOURNALS 862

Lake provided by suitable resilient storage (for

example Amazon Web Services S3 [4]). The source

code for the VMV software [10] is open source under

the MIT licence, and is available at https://github.com/

saschneider/VMV. Version 1.0, used in the system

described in this paper, is archived at

10.5281/zenodo.3695909.

VI. SYSTEM IMPLEMENTATION

The implementation of the project involves a

combination of multiple technologies and

methodologies that work together to create a

transparent, secure, and efficient voting environment.

Below is a breakdown of the system implementation:

1. Front-End Development

The front-end of the system is built using HTML, CSS,

JavaScript, and React.js to deliver a responsive and

user-friendly interface. Bootstrap are integrated to

ensure seamless user interactions. The front-end

design is optimized for accessibility across various

devices, allowing citizens and election officials to

easily navigate the platform.

2. Back-End Development

The backend of the system leverages Python (Flask) to

handle complex data processing, manage user

requests, and facilitate blockchain integration.

MySQL serves as the database to securely store critical

election-related information such as voter details, vote

logs, and candidate data.

3. User Authentication and Access Control

To ensure the integrity and security of the voting

process, the system utilizes Aadhar-based QR code

verification and facial recognition to authenticate

voters. For election officials, multi-factor

authentication is used to ensure secure access.

4. Blockchain Integration for Secure Voting

Blockchain technology, specifically Hyperledger

fabric, is at the core of this system, ensuring that votes

are securely stored as transactions on an immutable

ledger. Smart contracts verify the authenticity of votes,

prevent tampering, and facilitate automatic vote

tallying. The decentralized nature of the blockchain

ensures that no single entity can alter or manipulate

election results.

5. Voting Process and Ballot Management

The voting process begins with voter authentication,

where users are verified using Aadhaar details and

facial recognition. Once authenticated, voters can

select their preferred candidates from an electronic

ballot, cast their vote, and the vote is securely

encrypted and recorded on the blockchain. This

process guarantees confidentiality and integrity of

votes.

6. Result Computation and Transparency

Election results are computed in real-time and stored

on the blockchain for transparent, tamper-proof result

tallying. As votes are cast, they are automatically

aggregated, and results are displayed on the admin

dashboard. Blockchain allows for real-time audits,

offering transparency to stakeholders and eliminating

concerns over electoral fraud.

7. Notification System

The Notification System ensures that voters and

election officials are kept informed throughout the

election cycle. Voters receive notifications about

election dates, voting status, and result announcements

via email or SMS. All notifications are tracked and

logged to ensure that users receive timely

updates throughout the process.

8. Security Measures

Security is a core focus of the system, utilizing end-to-

end encryption to protect the integrity and

confidentiality of voter data and votes. Hashing

algorithms ensure that voter identities and vote data

remain secure. Additionally, distributed ledger

technology ensures there is no centralized control,

reducing the risk of vote tampering.

9. Testing and Validation

Rigorous system testing is conducted to ensure the

platform’s functionality, security, and performance.

This includes unit testing, penetration testing, and

blockchain validation. User feedback during testing

helps to optimize the system, address potential

vulnerabilities, and improve the user experience.

10. Deployment

Once the system is fully developed and tested, it is

deployed to a cloud-based server to ensure scalability

and high availability during elections. Post-

© FEB 2026 | IRE Journals | Volume 9 Issue 8 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I8-1714243

IRE 1714243 ICONIC RESEARCH AND ENGINEERING JOURNALS 863

deployment, security audits and regular updates are

performed to maintain the system’s compliance with

election laws and regulations.

VII. RESULT AND DISCUSSION

Fig 7.1 Home page

The home page of the voting system where the

Election Commission can log in using a user name and

password. It serves as the main access point for

authorized users to manage election-related operations

securely.

Fig 7.2 Training Module

The facial recognition training module for newly

registered voters. The system captures facial features

using an image processing algorithm and generates a

unique face template. It uses bounding box detection

to identify and extract the voter’s facial region for

training. The trained facial data is encoded and stored

in the system for future identification and verification.

This process enhances security and automation in the

voter authentication workflow.

Fig 7.3 Candidate information page

The Candidate Information page of the Election

Commission system. It presents the details of

registered candidates, including their name, age,

gender, and contact number. Each candidate is

represented with a unique election symbol, and the

interface provides options for viewing or submitting

candidate data. The layout follows a structured, user-

friendly design suitable for digital voting or candidate

management applications.

Fig 7.4 Face verification module

The Face Verification module of the Election

Commission Voting System. The interface captures

the user’s live image through a connected camera and

identifies facial regions using a bounding box for

recognition and verification. This process ensures

biometric authentication of the voter before granting

access to the voting portal. The system utilizes

computer vision and AI-based face detection

algorithms to compare live facial data with stored

voter records, enhancing security, transparency, and

prevention of impersonation in electronic voting. The

module forms a key component of the digital identity

verification framework integrated within the election

system.

© FEB 2026 | IRE Journals | Volume 9 Issue 8 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I8-1714243

IRE 1714243 ICONIC RESEARCH AND ENGINEERING JOURNALS 864

Fig 7.5 Voting interface

The voting interface of an Electronic Voting System

(EVS) designed for secure and user-friendly election

processes. The interface displays a structured layout

under the “Election Commission” module, showing

the voter’s details (name, gender, date of birth) along

with a list of candidates participating in the

election.Each candidate entry includes the candidate

name, party abbreviation, and corresponding party

symbol for easy recognition. On the right side, a “Vote

Now” button (or indicator) allows the voter to cast

their vote electronically for the chosen candidate.

Fig 7.6 Presiding officer’s dashboard

The Presiding Officer’s dashboard used to monitor

election activities.It displays voter details, booth and

district information, and total vote count.The interface

tracks registered voters and shows live voting progress

using visual charts.It helps ensure secure, transparent,

and efficient election management. The Presiding

Officer’s dashboard used to monitor election

activities.It displays voter details, booth and district

information, and total vote count.The interface tracks

registered voters and shows live voting progress using

visual charts.It helps ensure secure, transparent, and

efficient election management.

VIII. CONCLUSION AND FUTURE

ENHANCEMENT

CONCLUSION

 In conclusion, the project offers a secure, transparent,

and efficient alternative to traditional voting systems.

The system leverages blockchain technology to ensure

the integrity of votes and prevent any tampering or

fraud. By integrating Aadhar authentication for secure

user verification and OTP for transaction validation,

the system guarantees that only eligible voters

participate in the election process. Additionally, the

use of blockchain ensures that all votes are immutable,

providing transparency and accountability in the

voting process. The system is designed with several

key modules, including the Voter Registration System,

Vote Casting System, and Vote Verification System.

Each module is carefully crafted to ensure smooth

operation and secure functionality. The user-friendly

interface and seamless integration with blockchain

ensure a smooth experience for both voters and

administrators. Through thorough testing, the system

demonstrated robust performance under high traffic

and successfully passed all functionality, security, and

performance tests. The system's scalability allows it to

handle elections of varying sizes, making it suitable

for both small organizations and large-scale

governmental elections.

FUTURE ENHANCEMENT

Future enhancements for the Blockchain-Based

Online Voting System could focus on increasing

accessibility, enhancing security, and broadening its

functionality. Some potential improvements include:

Integration with Multi-Factor Authentication (MFA):

Incorporating multi-factor authentication mechanisms

such as one-time passwords (OTPs) or mobile app-

based authentication will provide an extra layer of

security to ensure voter identity verification.

Support for Global Elections: The system could be

expanded to support international elections by

incorporating different languages, electoral laws, and

cultural contexts, thus broadening its potential usage

for global elections.

Integration with Digital Identity Systems: Integrating

with decentralized identity systems, such as

Decentralized Identifiers (DIDs), can offer a more

© FEB 2026 | IRE Journals | Volume 9 Issue 8 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I8-1714243

IRE 1714243 ICONIC RESEARCH AND ENGINEERING JOURNALS 865

secure, user-controlled way to verify voter identities

while respecting privacy and autonomy.

Integration with Election Commission Systems: The

system can be integrated with national and local

election commission systems to streamline election

data management, reporting, and compliance with

electoral regulations.

REFERENCES

[1] Secure Online Voting System-Based on Facial

Recognition by Using Deep Learning , Krishna

Prakash; Nimmagaddda Vatsalya Mitra;

Nallamothu Pavan Kumar; Manda Anji Babu;

Shonak Bansal; Sandeep Kumar 2025

[2] A Comprehensive Evaluation of Secured

Electronic Voting System Design Based on Face

Biometric Authentication Policy, Pandarinath

Potluri; R. Jayakarthik; Shivam Agarwal;

Shobana S; Venkata Padmavathi S; Aarthi R

2024.

[3] Enhancing the Security of Online Voting System

Using Defined Biometrics, Devanshi Malik;

Kritika Tripathi; Jyotsna 2023

[4] Enhancing the Security of Online Voting System

Using Defined Biometrics, Devanshi Malik;

Kritika Tripathi; Jyotsna invented in 2023.

[5] M. Arnaud, V. Cortier, and C. Wiedling, “Analysis

of an electronic board- room voting system,” in

Proc. 4th Int. Conf., Springer, 2013, pp. 109–126.

[6] J. Ben-Nun et al., “A new implementation of a dual

(paper and crypto- graphic) voting system,” in

Proc. 5th Int. Conf. Electron. Voting, 2012,pp.

315–329.

[7] J. Benaloh, “Simple verifiable elections,” in Proc.

USENIX/ACCURATE Electron. Voting

Technol. Workshop, 2006, pp. 5–5.

[8] J. Benaloh, R. L. Rivest, P. Y. A. Ryan, P. B. Stark,

V. Teague, and P. L. Vora, “End-to-end

verifiability,” 2015, arXiv:1504.03778.

[9] Blockchain Solutions Group, “Quorum

whitepaper,” 2017. Accessed: Nov 14, 2021.

[Online]. Available:

https://www.blocksg.com/single-post/

2017/12/27/Quorum-Whitepaper

[10] M. Casey, “VMV: Verify my vote software,” 2020.

Accessed: Nov. 8, 2023. doi:

10.5281/zenodo.3695909.

[11] P. Chaidos, V. Cortier, G. Fuchsbauer, and D.

Galindo, “BeleniosRF: A non-interactive

receipt-free electronic voting scheme,” in Proc.

ACM SIGSAC Conf. Comput. Commun. Secur.,

2016, pp. 1614–1625.

[12] D. Chaum, “Untraceable electronic mail, return

addresses, and digital pseudonyms,” Commun.

ACM, vol. 24, no. 2, pp. 84–90, 1981.

[13] D. Chaum et al., “Scantegrity II: End-to-end

verifiability for optical scan election systems

using invisible ink confirmation codes,” in Proc.

USENIX/ACCURATE Electron. Voting

Workshop, 2008, Art. no. 13.

[14] D. Chaum, P. Y. A. Ryan, and S. A. Schneider, “A

practical voter-verifiable election scheme,” in

Proc. 10th Eur. Symp. Res. Comput. Secur.,

2005, pp. 118–139.

[15] N. Chondros et al., “D-DEMOS: A distributed,

end-to-end verifiable, internet voting system,” in

Proc. IEEE 36th Int. Conf. Distrib. Comput.

Syst., 2016, pp. 711–720.

[16] M. R. Clarkson, S. Chong, and A. C. Myers,

“Civitas: Toward a secure voting system,” in

Proc. IEEE Symp. Secur. Privacy, 2008, pp. 354–

368.

[17] C. Culnane and S. A. Schneider, “A peered

bulletin board for robust use in verifiable voting

systems,” in Proc. IEEE 27th Comput. Secur.

Found. Symp., 2014, pp. 169–183.

[18] T. Elgamal, “A public key cryptosystem and a

signature scheme based on discrete logarithms,”

IEEE Trans. Inf. Theory, vol. 31, no. 4, pp. 469–

472, Jul. 1985. Ethereum, “Home | ethereum,”

2019. Accessed: Nov. 14, 2021. [Online].

Available: https://ethereum.org/ Ethereum,

“Solidity-Solidity 0.4.21 documentation,” 2019.

Accessed: Nov. 14,2021.

https://github.com/ethereum/solidity NIST,

“Digital signature standard (DSS),” 2023.

Accessed: Nov. 8, 2023. [Online].Available:

https://csrc.nist.gov/pubs/fips/186-5/final

[19] K. Gjøsteen, “The Norwegian internet voting

protocol,” in Proc. 3rd Int. Conf., Springer, 2011,

pp. 1–18. K. Gjøsteen and A. S. Lund, “An

© FEB 2026 | IRE Journals | Volume 9 Issue 8 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I8-1714243

IRE 1714243 ICONIC RESEARCH AND ENGINEERING JOURNALS 866

experiment on the security of the Norwegian

electronic voting protocol,” Ann. des

Télécommunications, vol. 71, no. 7/8, pp. 299–

307, 2016. Google, “The go programming

language,” 2019. Accessed: Nov. 14, 2021.

[Online]. Available: https://golang.org/

GoQuorum, “Home | quorum,” 2021. Accessed:

Nov. 14, 2021. [Online]. Available:

https://www.goquorum.com/

[20] D. H. Hansson, “Ruby on rails | a web-application

framework that includes everything needed to

create database-backed web applications accord-

ing to the model-view-controller (MVC)

pattern,” 2019. Accessed: Nov. 14, 2021.

[Online]. Available: https://rubyonrails.org/

[21] S. Heiberg, T. Martens, P. Vinkel, and J.

Willemson, “Improving the verifiability of the

Estonian internet voting scheme,” in Proc. 1st Int.

Joint Conf. Electron. Voting, Springer, 2016, pp.

92–107.

[22] S. Heiberg and J. Willemson, “Verifiable internet

voting in Estonia,” in Proc. 6th Int. Conf.

Electron. Voting, 2014, pp. 1–8.

[23] J. Helbach and J. Schwenk, “Secure internet

voting with code sheets,” in Proc. 1st Int. Conf.

E-Voting Identity, 2007, pp. 166–177.

Information Commissioner’s Office, “Guide to

the general data pro- tection regulation-

GOV.UK,” 2018. Accessed: Nov. 14, 2021. [On-

line]. Available:

https://www.gov.uk/government/publications/gu

ide-to- the-general-data-protection-regulation V.

Iovino, A. Rial, P. B. Rønne, and P. Y. A. Ryan,

“Using Selene to verify your vote in JCJ,” in Proc.

Int. Workshops Financial Cryptogr. Data Secur.,

Springer, 2017, pp. 385–403.

[24] R. Joaquim, P. Ferreira, and C. Ribeiro, “EVIV:

An end-to-end verifiable internet voting

system,” Comput. Secur., vol. 32, pp. 170–191,

2013.

[25] S. Khazaei and D. Wikström, “Return code

schemes for electronic voting systems,” in Proc.

2nd Int. Joint Conf. Electron. Voting, Springer,

2017, pp. 198–209.

[26] O. Kulyk, J. Henzel, K. Renaud, and M.

Volkamer, “Comparing ”challenge-based” and

”code-based” internet voting verification imple-

mentations,” in Proc. 17th IFIP TC 13 Int. Conf.

Hum.-Comput. Interac- tion, Springer, 2019, pp.

519–538.

[27] R. Küsters, J. Müller, E. Scapin, and T. Truderung,

“sElect: A lightweight verifiable remote voting

system,” in Proc. IEEE 29th Comput. Secur.

Found. Symp., 2016, pp. 341–354.

[28] B. Laurie, A. Langley, and E. Käsper, “Certificate

transparency,” RFC, vol. 6962, pp. 1–27, 2013.

“Legion of the Bouncy Castle Inc. The legion of

the bouncy castle java cryptography APIs,”

2019. Accessed Nov. 14, 2021. [Online].

Available: https://www.bouncycastle.org/

Oracle, “Java | Oracle,” 2019. Accessed: Nov. 21,

2021. [Online]. Avail- able:

https://www.java.com/

[29] P. Roenne, P. Y. Ryan, and M.-L. Zollinger,

“Electryo, in-person voting with transparent

voter verifiability and eligibility verifiability,” in

Proc. 3rd Int. Joint Conf. Electron. Voting E-

Vote-ID: TUT Press Proc., 2018,pp. 147–164.

[30] P. Y. A. Ryan, P. B. Rønne, and V. Iovino, “Selene:

Voting with transparent verifiability and coercion-

mitigation,” in Proc. Int. Workshops Financial

Cryptogr. Data Secur., 2016, pp. 176–192.

[31] P. Y. A. Ryan and V. Teague, “Pretty good

democracy,” in Proc. 17th Int. Workshop Secur.

Protoc., 2009, pp. 111–130.[41] K. Sako and J.

Kilian, “Receipt-free mix-type voting scheme,”

in Proc. Conf. Adv. Cryptol., 1995, pp. 393–

403.[42] M. Sallal et al., “Augmenting an

internet voting system with selene verifiability

using permissioned distributed ledger,” in Proc.

IEEE 40th Int. Conf. Distrib. Comput. Syst.,

2020, pp. 1167–1168.

[32] M. Sallal et al., “VMV: Augmenting an internet

voting system with selene verifiability,” 2019,

arXiv: 1912.00288.Swiss Post, E-voting:

Online voting and elections, 2023. Accessed:

Nov. 8, 2023.[Online]Available: https://digital-

solutions.post.ch/en/e- government/digitization-

solutions/evoting/publications-and-source-code

The Political and Constitutional Reform

Committee, “Voter engagement in the UK: Follow

up - political and constitutional reform,” 2015.

Accessed:

Nov.14,2021.[Online].Available:https://publicati

© FEB 2026 | IRE Journals | Volume 9 Issue 8 | ISSN: 2456-8880
DOI: https://doi.org/10.64388/IREV9I8-1714243

IRE 1714243 ICONIC RESEARCH AND ENGINEERING JOURNALS 867

ons.parliament.uk/pa/

cm201415/cmselect/cmpolcon/938/93802.htm

[33] D. Wikström, “Verificatum,” 2021. Accessed:

Nov. 14, 2021. [Online]. Available:

https://www.verificatum.com/

