

Automatic Security Light System Using PIR Sensor

GOURI S. SHARMA¹, MADHURA M. KULKARNI², KALYANKAR P. GANGAPRASAD³,
DEVIPRASAD J. TUPTEWAR⁴

^{1, 2, 3, 4}Department of Electronics and Telecommunication Engineering, MGM'S College Engineering,
Nanded, Maharashtra, India

Abstract – The Automatic security light system is designed to enhance safety and reduce energy consumption by automatically controlling lighting based on human presence and ambient light conditions. The system primarily uses a Passive Infrared (PIR) sensor to detect motion and a Light Dependent Resistor (LDR) to sense surrounding light intensity. When motion is detected in low-light or night conditions, the system automatically switches ON the security light, and it turns OFF after a predefined time when no motion is detected. This eliminates the need for manual operation and ensures efficient use of electrical energy. The proposed system is simple, cost-effective, and reliable, making it suitable for residential buildings, streets, parking areas, and industrial premises. By providing automatic illumination only when required, the system improves security while minimizing power wastage. The Automatic Security Light System demonstrates an effective solution for smart lighting applications in modern security and energy-saving systems.

I. INTRODUCTION

With the increasing need for safety, security, and energy conservation, automation in lighting systems has become an essential requirement in modern society. Conventional lighting systems require manual operation and often remain switched ON unnecessarily, leading to wastage of electrical energy. To overcome these limitations, the Automatic Security Light System has been developed to provide intelligent and efficient lighting control.

The Automatic Security Light System automatically turns ON the light when human movement is detected in dark or low-light conditions and switches it OFF when no motion is present. The system mainly uses a Passive Infrared (PIR) sensor to detect motion and a Light Dependent Resistor (LDR) to sense ambient light intensity. This combination ensures that the light operates only when required, improving both security and energy efficiency.

Such systems are widely used in residential areas, offices, streets, parking lots, warehouses, and industrial premises. Automatic security lighting not

only helps in preventing unauthorized access and theft but also enhances visibility and safety during nighttime. Additionally, by reducing unnecessary power consumption, the system contributes to environmental protection and cost savings.

II. OBJECTIVE

The main objective of the Automatic Security Light System is to design and implement a smart lighting system that operates automatically without manual intervention. The system aims to detect human motion using a PIR sensor and control the LED light accordingly, ensuring illumination only when required. This helps to improve security in residential, commercial, and public areas during low-light conditions while reducing unnecessary power consumption. The project also focuses on developing a cost-effective, reliable, and easy-to-assemble system using Arduino Uno and basic electronic components. Additionally, it demonstrates the integration of sensors and microcontrollers for energy-efficient and practical automation applications in modern smart homes.

III. LITERATURE

Automatic security light systems have been developed to improve safety and reduce energy consumption. Early systems used only light sensors such as LDRs to switch lights ON and OFF based on daylight conditions. Although effective, these systems could not detect human presence.

Later developments introduced Passive Infrared (PIR) sensors to detect motion, which improved security by activating lights only when movement was detected. Further advancements included the use of microcontrollers like Arduino and 8051, allowing better control, timing functions, and system flexibility.

Recent studies focus on smart and IoT-based security lighting systems that enable remote monitoring and control. The literature shows that combining motion

detection with ambient light sensing provides an efficient, reliable, and energy-saving solution for modern security applications.

IV. COMPONENT REQUIREMENT

1. Arduino Uno:

Arduino Uno is a popular microcontroller development board based on the ATmega328P microcontroller. It acts as the main control unit of the automatic security light system. The Arduino receives input signals from the PIR sensor, processes them according to the programmed logic, and controls the output device (LED). It operates at 5V and provides multiple digital and analog input/output pins, which makes it suitable for interfacing with sensors and actuators. The Arduino Uno is easy to program using the Arduino IDE and supports USB connectivity for uploading programs and power supply. Its reliability, simplicity, and flexibility make it ideal for security and automation projects.

2. PIR Sensor:

The Passive Infrared (PIR) sensor is used to detect human motion in the protected area. It works by sensing changes in infrared radiation. The PIR sensor is used to detect human motion in the protected area. It works by sensing changes in infrared radiation emitted by warm objects such as the human body. When a person enters the sensor's detection range, the PIR sensor generates a digital output signal, which is sent to the Arduino Uno. The sensor typically has three pins: VCC (power supply), GND (ground), and OUT (output signal). PIR sensors are widely used in security applications due to their low power consumption, high sensitivity, and ability to detect motion without physical contact.

3. Breadboard:

A breadboard is used to construct the circuit without soldering. It allows all components such as the Arduino Uno, PIR sensor, LED, and connecting wires to be easily connected and tested. Breadboards are especially useful during the design and testing phase of the project because components can be added, removed, or modified without damaging them. This makes troubleshooting and experimentation simple and efficient.

V. PROBLEM STATEMENT

In many residential, commercial, and public areas, lighting systems are still operated manually or remain switched ON continuously during nighttime. This leads to unnecessary wastage of electrical energy and increases electricity costs. Moreover, conventional lighting systems do not respond automatically to human presence, reducing their effectiveness in providing security.

There is a need for a system that can automatically detect human movement in low-light conditions and provide instant illumination only when required. The system should be reliable, energy-efficient, and easy to implement using low-cost components. Therefore, the problem is to design and implement an Automatic Security Light System using Arduino and motion sensing technology that automatically controls lighting to improve security while minimizing power consumption.

VI. METHODOLOGY

The Automatic Security Light System is designed using Arduino Uno as the main control unit. A PIR sensor is used to detect human motion by sensing changes in infrared radiation. The output of the PIR sensor is connected to the digital input pin of the Arduino. An LED is used as the security light and is connected to a digital output pin of the Arduino through a current-limiting resistor.

The circuit is assembled on a breadboard for easy connection and testing. The Arduino is programmed using the Arduino IDE to continuously monitor the PIR sensor output. When motion is detected, the Arduino processes the signal and turns the LED ON. The LED remains ON for a predefined time period. If no further motion is detected, the Arduino automatically turns the LED OFF.

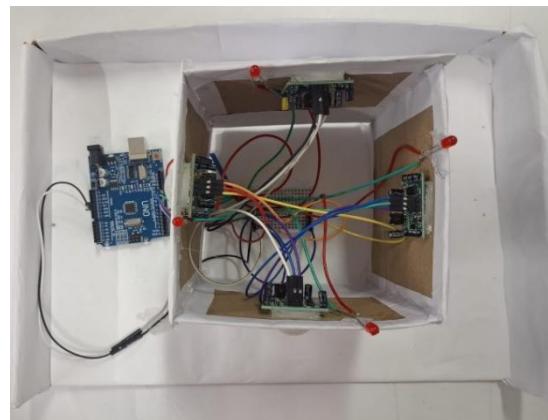
The system is tested under different conditions to ensure proper operation and reliability.

VII. WORKING OF THE SYSTEM

The Automatic Security Light System operates by automatically controlling the light based on human. The Arduino Uno functions as the main controller of the system. A PIR sensor is used to continuously sense the surrounding area for movement by detecting changes in infrared radiation emitted by the human body. Under normal conditions, the PIR sensor remains inactive and the LED stays OFF.

When a person enters the detection range of the PIR sensor, the sensor produces a HIGH output signal. This signal is sent to the Arduino Uno through a digital input pin. The Arduino reads and processes this signal according to the programmed instructions. After confirming motion detection, the Arduino sends a command to the output pin connected to the LED.

As a result, the LED turns ON and provides illumination for security purposes. The light remains ON for a predefined time delay set in the program. If additional motion is detected during this period, the timer is reset. When no motion is detected for the specified time, the Arduino automatically turns the LED OFF.


This automatic operation improves safety, saves electrical energy, and eliminates the need for manual control.

VIII. IMPLEMENTATION

The implementation of the Automatic Security Light System is carried out using Arduino Uno, a PIR sensor, an LED, and a breadboard. Initially, all the required components are collected and checked for proper working. The PIR sensor is connected to the Arduino Uno by supplying 5V power and ground, while its output pin is connected to a digital input pin of the Arduino. The LED is connected to a digital output pin of the Arduino through a current-limiting resistor.

The entire circuit is assembled on a breadboard to avoid soldering and to allow easy modifications. The Arduino Uno is then connected to a computer using a USB cable. A control program is written and uploaded to the Arduino using the Arduino IDE. The program is designed to continuously read the PIR sensor output and control the LED accordingly.

After programming, the system is tested by moving in front of the PIR sensor. When motion is detected, the LED turns ON, and it turns OFF automatically after a preset delay when no motion is sensed. Proper testing ensures reliable and efficient system operation.

IX. CONCLUSIONS

The Automatic Security Light System has been successfully designed and implemented using Arduino Uno, a PIR sensor, and an LED. The system effectively detects human motion and automatically controls the light without the need for manual operation. This helps in improving security in residential and commercial areas, especially during nighttime. The use of sensors ensures that the light operates only when required, thereby reducing unnecessary power consumption. The system is

simple, cost-effective, and reliable, making it suitable for practical security applications. Overall, the project demonstrates an efficient solution for smart lighting and energy-saving security systems.

REFERENCES

- [1] D. M. Dighe and V. D. Nerkar “Home Automation Using Arduino,” International Journal of Research in Advent Technology, vol. 3, no. 5, pp. 1–4, 2015.
- [2] R. A. Karthasyan and P. D., “Automatic Lighting Using Arduino and PIR Sensor,” International Journal of Computer Science Trends and Technology, vol. 6, Sept–Oct 2018.
- [3] Abhishek N. Vaghela and Bhavin D. Gujjar, “Automatic Switch Using PIR Sensor,” International Journal of Engineering Development and Research.
- [4] Amirah Aisha Badrul Hisham et al., “Bluetooth-Based Home Automation Using an Android Phone,” Universiti Teknologi Malaysia, Article, May 2014.
- [5] Sathesh et al., “Smart Home Environment: Future Challenges and Issues – A Survey,” Journal of Electronics.
- [6] K. Umapathy et al., “Bluetooth Controlled Electronic Home Appliances System,” International Journal of Research Publication and Reviews, vol. 2, issue 3, pp. 309–313, 2021.
- [7] Prof. Santawana Gudadhe et al., “Home Automation Systems Using Android Applications,” International Journal of Innovative Research in Science, Engineering and Technology, vol. 8, issue 4, April 2019.