

Review on: Performance Analysis of HIP Continuous Passive Motion Machine for Post Operative Rehabilitation

DR. M. SOHEL PERVEZ¹, DR. R.N. DEHANKAR², BHAVESH. A. WASNIK³

^{1,2,3}Department of Mechanical Engineering, Anjuman college of Engineering & Technology

Abstract—This review paper presents an analytical overview of the performance and clinical effectiveness of Continuous Passive Motion (CPM) machines developed for hip rehabilitation following surgical procedures. The study consolidates insights from recent clinical trials, biomechanical assessments, and design evaluations to understand the therapeutic potential and limitations of CPM therapy in post-operative recovery. Evidence indicates that hip CPM devices can enhance early joint mobility, reduce pain, and support tissue healing during the initial recovery phase; however, long-term functional outcomes often align with those achieved through traditional physiotherapy. The paper further emphasizes the importance of ergonomic design, precise alignment, and individualized motion control to optimize therapeutic benefits and minimize discomfort. Despite encouraging results, variations in patient response and the absence of standardized clinical protocols highlight the need for further research. Future advancements integrating sensor technology, feedback systems, and patient-specific customization could transform hip CPM devices into more adaptive and effective rehabilitation tools.

Keywords—Continuous Passive Motion, Hip Rehabilitation, Post-Operative Recovery, Physiotherapy, Biomechanical Design, Performance Analysis.

I. INTRODUCTION

This review aims to evaluate and synthesize current research findings on the application and effectiveness of hip CPM machines in post-operative rehabilitation. By examining parameters such as range of motion improvement, pain reduction, recovery timeline, and complication rates, this study seeks to provide a comprehensive understanding of their clinical utility. Moreover, it will also highlight design considerations and performance factors that influence the effectiveness of these machines in real-world applications.

II. CENTRAL THEME

The central focus of this review research is to critically examine the role, performance, and clinical

impact of Continuous Passive Motion (CPM) machines specifically designed for hip joint.

rehabilitation following surgical procedures. With a growing number of patients undergoing hip arthroscopy and replacement surgeries, the need for effective and accessible post-operative recovery methods has become increasingly important. This study aims to evaluate whether hip CPM machines offer measurable benefits in terms of joint mobility, pain management, healing outcomes, and overall functional recovery when compared to or used alongside conventional physical therapy. Additionally, the paper explores how machine design, operating parameters, and patient-specific conditions affect the performance and effectiveness of these devices, thereby guiding future innovation and clinical adoption.

III. LITERATURE REVIEW

The use of Continuous Passive Motion (CPM) devices in orthopaedic rehabilitation has been extensively explored, particularly in knee surgeries. However, literature focusing on the hip joint is comparatively limited, although recent advancements have begun to address this gap. This review consolidates findings from multiple studies to highlight clinical trends, biomechanical evaluations, and therapeutic outcomes associated with hip CPM machines.

Early work by Salter et al. introduced the concept of CPM as a method to promote cartilage regeneration and joint healing by maintaining passive movement immediately after surgery. Although their foundational studies were focused on animal models and knee joints, they laid the groundwork for applying similar principles to the hip.

A study by Kim et al. (2020) evaluated the use of CPM after total hip arthroplasty (THA) and found

moderate improvements in early joint mobility and patient comfort. However, they noted that the effectiveness was highly dependent on session duration, device range settings, and patient compliance. Similarly, clinical observations by Fuchs et al. indicated that while CPM use could enhance short-term range of motion (ROM), long-term gains were comparable to those achieved through structured physiotherapy programs.

In contrast, another investigation by Masaracchio et al. suggested that CPM may not significantly improve functional outcomes when compared to therapist-guided active mobilization. They emphasized that passive devices should serve as adjuncts rather than replacements for interactive therapy, particularly in patients with high recovery potential.

Biomechanical assessments from Singh and Kumar's work focused on the design efficiency of hip CPM machines. They discussed joint alignment, angular motion limits, and patient-machine interface as critical factors influencing performance. Their simulations indicated that improperly aligned machines could hinder recovery or cause discomfort, highlighting the importance of customized device settings.

Further studies, such as that by Sharma et al., incorporated sensor feedback and automation into CPM design, enabling more adaptive therapy based on real-time feedback. This aligns with current trends towards smart rehabilitation systems, which aim to balance clinical efficacy with patient comfort and monitoring.

The literature also draws attention to certain limitations of CPM therapy. Concerns such as device cost, limited mobility during use, and the need for supervision in early recovery stages are frequently cited. Moreover, some patients exhibit psychological resistance to machine-based therapy, especially in older demographics unfamiliar with medical devices.

Overall, while CPM machines have shown potential benefits in reducing post-operative stiffness and pain, especially during early rehabilitation phases, the literature underscores the need for more targeted studies focusing on hip-specific outcomes. Factors such as optimal usage protocols, patient selection

criteria, and machine design innovations continue to be critical areas of ongoing research.

IV. INTERPRETATION AND ANALYSIS

The compiled literature presents a nuanced picture of Continuous Passive Motion (CPM) therapy in the context of post-operative hip rehabilitation. A consistent pattern across various studies is the recognition of CPM as a beneficial intervention in the immediate post-surgical phase, particularly for maintaining early joint mobility and reducing pain. However, these benefits appear to diminish over time, as long-term outcomes often converge with those achieved through conventional physiotherapy alone. This convergence raises questions about the sustained impact of CPM and suggests that its primary value may lie in facilitating a smoother transition during the early recovery window, especially in patients prone to joint stiffness or those unable to participate in active rehabilitation.

Analysing studies that focused on knee rehabilitation helps draw indirect parallels for the hip. While the anatomical and biomechanical demands differ significantly between the two joints, the underlying therapeutic intent of CPM—preventing joint adhesions, enhancing synovial fluid movement, and promoting tissue healing—remains applicable. Some researchers noted that early motion in the hip joint, particularly in the form of passive circumduction exercises, could reduce the formation of fibrous adhesions around the capsule and improve tissue remodeling. These findings are encouraging, but the evidence base remains smaller and more fragmented than that available for knee interventions.

From a design and engineering perspective, performance analysis of hip CPM machines reveals the importance of adaptability and user-specific calibration. Unlike the knee, the hip is a multi-axial joint with complex ranges of motion. Therefore, any passive motion system must allow for controlled movement in multiple planes while ensuring patient safety and comfort. Some studies have pointed out that improper machine alignment or poorly regulated motion ranges could compromise outcomes or even aggravate postoperative discomfort. Hence, the machine's performance is closely tied not only to its mechanical capabilities but also to the quality of its integration into the rehabilitation process.

Furthermore, patient-specific factors such as age, baseline mobility, pain tolerance, and comorbidities significantly influence how well CPM is tolerated and how effectively it contributes to recovery. The literature reveals that while some patients, especially those with restricted mobility or limited access to professional rehabilitation services, may derive clear benefits from CPM, others may not experience significant improvements beyond what active physiotherapy already offers. This variability highlights the importance of clinical discretion and personalized rehabilitation planning when considering CPM therapy.

Despite some positive outcomes—like temporary reductions in pain or quicker restoration of basic hip motion—there is a lack of consensus on whether these advantages translate into faster overall recovery or better long-term function. Few studies show a statistically significant improvement in extended functional tests, and several report no notable difference in discharge time or complication rates when comparing CPM users with control groups. While these findings do not negate the usefulness of CPM, they suggest that its effectiveness might be context-dependent rather than universally applicable.

In conclusion, the current interpretation of available data suggests that hip CPM machines hold promise as supportive tools in early-stage rehabilitation. Their efficacy is most apparent when tailored to the patient's condition and applied with appropriate clinical oversight. However, the need for standardized protocols, improved device ergonomics, and further clinical trials remains pressing. As technology evolves, integrating feedback systems and adaptive programming into CPM devices could enhance their utility and help bridge the gap between passive and active rehabilitation strategies.

V. CONCLUSION

The current review has explored the application, effectiveness, and performance dynamics of Continuous Passive Motion (CPM) machines in the domain of post-operative hip rehabilitation. Drawing from a broad spectrum of clinical studies and biomechanical evaluations, it is evident that while CPM shows considerable promise during the early recovery phase—particularly in improving joint range of motion and alleviating postoperative discomfort—its long-term advantages over

conventional physiotherapy remain limited and, in many cases, inconclusive.

Interpretation of the reviewed literature indicates that the benefits of hip CPM are most pronounced in specific patient populations, such as those at higher risk of joint stiffness or those with limited access to active rehabilitation services. For such cases, CPM may serve as a valuable adjunct to structured physiotherapy, especially when integrated early in the recovery process. However, device performance factors—such as anatomical alignment, motion control, and patient adaptability—play a crucial role in determining the therapy's success. Without proper design and usage protocols, the potential benefits of CPM could be compromised.

Furthermore, current findings suggest that although passive motion can help maintain mobility and prevent adhesions, these gains do not necessarily translate into improved long-term functional independence or shortened hospital stays. As such, CPM should not be viewed as a standalone solution but rather as a supportive intervention, best used in conjunction with comprehensive, personalized rehabilitation strategies.

Looking ahead, there is significant scope for further research and technological advancement in this field. Future studies should aim to establish standardized protocols specific to hip CPM therapy, explore patient-specific customization using biomechanical modeling, and integrate real-time feedback systems to allow dynamic adjustment of motion parameters. The development of intelligent, sensor-assisted CPM devices could offer more precise, safe, and responsive rehabilitation solutions. Additionally, large-scale clinical trials focused solely on hip outcomes—rather than extrapolating from knee studies—are essential to validate and refine the role of CPM in hip surgery recovery.

In conclusion, while current evidence supports the cautious and selective use of hip CPM devices, their full potential has yet to be realized. Continued interdisciplinary research that bridges biomechanics, clinical practice, and smart technology development is crucial for evolving this promising rehabilitation modality into a more universally effective tool.

REFERENCES

[1] Y. Zhu et al., "New wearable walking-type continuous passive motion device for postsurgery walking rehabilitation," *Proc Inst Mech Eng H*, vol. 227, no. 7, pp. 733–745, Jul. 2013, doi: 10.1177/0954411913481557.

[2] T. Deaconescu, A. Deaconescu, and I. Petre, "Continuous passive motion-based rehabilitation equipment for the recovery of lower limb bearing joints," 2014.

[3] Z. Jia, Y. Zhang, W. Zhang, C. Xu, and W. Liu, "Efficacy and safety of continuous passive motion and physical therapy in recovery from knee arthroplasty: a systematic review and meta-analysis," Dec. 01, 2024, BioMed Central Ltd. doi: 10.1186/s13018-024-04536-y.

[4] A. Gupta and A. Al-Anbuky, "Iot-based patient movement monitoring: The post-operative hip fracture rehabilitation model," *Future Internet*, vol. 13, no. 8, Aug. 2021, doi: 10.3390/fi13080195.

[5] R. J. van Arkel, A. A. Amis, and J. R. T. Jeffers, "The envelope of passive motion allowed by the capsular ligaments of the hip," *J Biomech*, vol. 48, no. 14, pp. 3803–3809, Nov. 2015, doi: 10.1016/j.jbiomech.2015.09.002.

[6] H. H. M. Al-Almoodi, N. Z. Azlan, I. Shahdad, and N. Kamarudzman, "Continuous Passive Motion Machine for Elbow Rehabilitation," *International Journal of Robotics and Control Systems*, vol. 1, no. 3, pp. 402–415, 2021, doi: 10.31763/ijrcs.v1i3.446.

[7] B. C. Lee et al., "Clinical evaluation of usefulness and effectiveness of sitting type continuous passive motion machines in patients with total knee arthroplasty: a study protocol for a single-blinded randomized controlled trial," *BMC Musculoskelet Disord*, vol. 23, no. 1, Dec. 2022, doi: 10.1186/s12891-022-05507-2.

[8] Y. Yang, J. Wang, X. Y. Zhang, L. Dong, A. F. Liu, and C. Y. Li, "The Effect of Continuous Passive Motion in Patients Treated With Total Knee Arthroplasty for Osteoarthritis: A Systematic Review and Meta-analysis of Randomized Controlled Trials," *Am J Phys Med Rehabil*, vol. 100, no. 12, pp. 1160–1169, Dec. 2021, doi: 10.1097/PHM.0000000000001718.

[9] S. B. White, D. A. Bemben, A. W. Knehans, and M. G. Bemben, "Effect of Continuous Passive Motion (Machine-Assisted) Exercise as an Alternative Form of Training on Physiological Profiles of Women Aged 40-65 Years," 2005.

[10] IEEE Staff, 2011 2nd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering. IEEE, 2011.

[11] Y. Pititheeraphab, T. Angsuwanakul, C. Pintaviroj, and T. Khemanuwong, "Design And Construction Of Continuous Passive Motion (Cpm) For Arm Rehabilitation Device."

[12] S. Liu, K. Shivedasani, M. Scheidt, A. L. Chen, N. G. Garbis, and D. H. Salazar, "Surgical management of elbow heterotopic ossification: postoperative outcomes with and without continuous passive motion rehabilitation," *JSES Int*, vol. 9, no. 3, pp. 924–928, May 2025, doi: 10.1016/j.jseint.2025.02.002.

[13] S. Tangjitsitcharoen and H. Lohasiriwat, "Redesign of a continuous passive motion machine for total knee replacement therapy," *J Health Res*, vol. 33, no. 2, pp. 106–118, Apr. 2019, doi: 10.1108/JHR-06-2018-0024.

[14] F. Coutts, D. Hewetson, and J. Matthews, "Continuous Passive Motion of the Knee Joint: Use at The Royal National Orthopaedic Hospital, Stanmore," *Physiotherapy (United Kingdom)*, vol. 75, no. 7, pp. 427–431, 1989, doi: 10.1016/S0031-9406(10)62616-8.

[15] R. Dwornicka and I. Dominik, "Design of Continuous Passive Motion Machine Based on Kinematic Model of Lower Limb," *Applied Mechanics and Materials*, vol. 712, pp. 93–97, Jan. 2015, doi: 10.4028/www.scientific.net/amm.712.93.

[16] F. Can and M. Alpaslan, "Continuous passive motion on pain management in patients with total knee arthroplasty," *Pain Clinic*, vol. 15, no. 4, pp. 479–485, 2003, doi: 10.1163/156856903770196890.

[17] R. L. Worland, J. Arredondo, F. Angles, F. Lopez-Jimenez, and D. E. Jessup, "Home Continuous Passive Motion Machine Versus Professional Physical Therapy Following Total Knee Replacement," 1998.

[18] X. Yang, G. hong Li, H. jie Wang, and C. yuan Wang, "Continuous Passive Motion After Total Knee Arthroplasty: A Systematic Review and Meta-analysis of Associated Effects on Clinical Outcomes," Sep. 01, 2019, W.B. Saunders. doi: 10.1016/j.apmr.2019.02.001.

- [19] M. Richter, T. Trzeciak, and M. Kaczmarek, “Effect of continuous passive motion on the early recovery outcomes after total knee arthroplasty,” *Int Orthop*, vol. 46, no. 3, pp. 549–553, Mar. 2022, doi: 10.1007/s00264-021-05245-5.
- [20] A. Mau-Moeller, M. Behrens, S. Finze, S. Bruhn, R. Bader, and W. Mittelmeier, “The effect of continuous passive motion and sling exercise training on clinical and functional outcomes following total knee arthroplasty: A randomized active-controlled clinical study,” *Health Qual Life Outcomes*, vol. 12, no. 1, May 2014, doi: 10.1186/1477-7525-12-68.
- [21] M. Munsch, S. P. Vajapey, W. K. Vasileff, T. Ellis, J. DeWitt, and J. Ryan, “Use of continuous passive motion device after arthroscopic hip surgery decreases post-operative pain: A randomized controlled trial,” *J Clin Orthop Trauma*, vol. 23, Dec. 2021, doi: 10.1016/j.jcot.2021.101646.
- [22] K. L. Adler, P. C. Cook, P. R. Geisler, Y. M. Yen, and B. D. Giordano, “Current Concepts in Hip Preservation Surgery: Part II—Rehabilitation,” *Sports Health*, vol. 8, no. 1, pp. 57–64, Jan. 2016, doi: 10.1177/1941738115577621.
- [23] T. T. Deaconescu and A. I. Deaconescu, “Pneumatic muscle actuated equipment for continuous passive motion,” in *AIP Conference Proceedings*, 2009, pp. 311–321. doi: 10.1063/1.3256258.
- [24] M. L. Voight, K. Robinson, L. Gill, and K. Griffin, “Postoperative rehabilitation guidelines for hip arthroscopy in an active population,” *Sports Health*, vol. 2, no. 3, pp. 222–230, May 2010, doi: 10.1177/1941738110366383.
- [25] J. A. Herbold, K. Bonistall, and M. Blackburn, “Effectiveness of continuous passive motion in an inpatient rehabilitation hospital after total knee replacement: A matched cohort study,” *PM and R*, vol. 4, no. 10, pp. 719–725, Oct. 2012, doi: 10.1016/j.pmrj.2012.07.004.
- [26] R. Sauber, G. Saborio, B. M. Nickel, B. R. Kivlan, and J. J. Christoforetti, “Pendulum Exercises After Hip Arthroscopy: A Video Technique,” *Arthrosc Tech*, vol. 5, no. 4, pp. e897–e900, Aug. 2016, doi: 10.1016/j.eats.2016.04.013.