

A Case Study on Piezoelectric Road in Kolhapur City

SUPRIYA P. MENGANE¹, PRACHI S. MATAWADE², MAYURI S. MORE³, SANIKA S. SHINDE⁴,
ARPITA A. JADHAV⁵

^{1, 2, 3, 4, 5}Civil Engineering, Dr. Bapuji Salunkhe Institute of Engineering & Technology

Abstract- *Piezoelectric road technology is an emerging method of harvesting electrical energy from moving vehicles by converting mechanical stress into usable power. With increasing urban energy demand, transportation infrastructure can serve as a continuous renewable energy source. This review examines the working principles, materials, installation techniques, and performance characteristics of piezoelectric road systems reported in previous studies. Various research findings on energy output, sensor placement, traffic loading effects, and durability are compared. The advantages of clean energy generation, reduced transmission loss, and smart city applications are discussed. Key limitations such as high initial cost, maintenance requirements, and low conversion efficiency are also analyzed. The study identifies research gaps related to material improvement and system optimization. It concludes that piezoelectric roads can function as a supplementary Eco-friendly energy solution when integrated with advanced technologies.*

Keywords- *Piezoelectric road, Energy harvesting, Renewable energy, Traffic-induced vibration, Smart city infrastructure, Eco-friendly urban development.*

I. INTRODUCTION

Rapid urban development and increasing vehicle traffic have raised the demand for electrical energy in growing cities such as Kolhapur. Conventional energy sources are limited and contribute to environmental pollution, encouraging the adoption of Eco-friendly alternatives. Roads experience continuous mechanical stress and vibration from moving vehicles, and this energy is usually wasted. Piezoelectric technology allows conversion of this mechanical pressure into electrical energy using sensors embedded within Road surface layers.

Many studies have explored the feasibility of piezoelectric roads for generating small but continuous power suitable for street lighting, traffic signals, and monitoring devices in urban areas. Such systems support smart city development by utilizing

existing infrastructure without additional fuel consumption. However, challenges like installation cost, durability of sensors, and low conversion efficiency still restrict large-scale implementation. This review paper summarizes previous research on piezoelectric road technology, including its working principles, materials, applications, advantages, and limitations with relevance to urban conditions like Kolhapur city.

II. IDENTIFY, RESEARCH AND COLLECT IDEA

It is the initial step in preparing the review paper on piezoelectric road technology. The idea is based on utilizing the mechanical energy generated by moving vehicles on road surfaces and converting it into electrical energy using piezoelectric materials. This concept helps in producing renewable energy from existing transportation infrastructure without additional fuel consumption.

To understand the feasibility of the topic, various published research papers, journals and technical articles related to piezoelectric energy harvesting were studied. The collected literature provides information about working principles, sensor arrangement, Road surface behavior, and energy generation efficiency under different traffic conditions. Previous studies also explain applications such as street lighting, traffic signals and smart monitoring systems.

The collected information is analyzed to identify advantages, limitations and research gaps in the present technology. This helps in understanding the scope of piezoelectric roads as a Eco-friendly energy source for urban areas like Kolhapur and supports future development of smart city infrastructure.

III. STUDIES AND FINDINGS

The collected research papers on piezoelectric road technology were studied and compared to understand

the performance and feasibility of the system. Most studies explain that electrical energy is generated when vehicles apply pressure on piezoelectric sensors embedded beneath Road surface layers. The energy output mainly depends on traffic density, vehicle load and proper placement of sensors.

It is observed that piezoelectric roads are capable of producing small but continuous electrical power which is suitable for low-energy applications such as street lighting, traffic signals, display boards and monitoring devices. The technology supports Eco-friendly development by utilizing wasted mechanical energy and reducing dependence on conventional power sources.

However, the reviewed studies also highlight certain limitations such as high installation cost, maintenance requirements, durability of sensors under heavy traffic and low conversion efficiency. Overall findings indicate that piezoelectric roads are feasible as a supplementary renewable energy source, but improvements in material performance and system design are required for large-scale implementation.

IV. GET PEER REVIEWED

After preparation of the review paper, the manuscript should be examined by subject experts, faculty members, or experienced researchers in the relevant field. Peer review helps in identifying technical mistakes, language errors, and improper interpretations of collected literature. Suggestions provided by reviewers improve the clarity, accuracy, and quality of the paper.

The review process also ensures that the content is plagiarism-free, properly structured, and suitable for journal publication standards. Necessary corrections and modifications are made based on the comments received. This step increases the reliability and acceptance chances of the research paper for publication in reputed journals.

V. IMPROVEMENT AS PER REVIEWER COMMENTS

After receiving the reviewer suggestions, the manuscript is carefully revised to improve its technical quality and presentation. Necessary

corrections such as modification of statements, addition of references, improvement in language clarity, and proper formatting are carried out. Any unclear explanations are rewritten to make the content more understandable and accurate.

Additional literature may be included to strengthen the discussion and support the findings of the review. Errors related to grammar, structure, and citation style are also corrected according to journal guidelines. This revision process enhances the reliability of the paper and increases its chances of acceptance for publication.

VI. CONCLUSION

The review of piezoelectric road technology indicates that it is a promising method for generating electrical energy from moving vehicles using existing road infrastructure. The system can provide small but continuous power suitable for applications such as street lighting, traffic signals and monitoring devices, supporting Eco-friendly urban development.

Although the technology offers environmental and energy-saving benefits, challenges such as high installation cost, durability of sensors and low energy conversion efficiency still limit large-scale implementation. With advancements in materials, design optimization and integration with smart systems, piezoelectric roads can become an effective supplementary renewable energy source for future smart cities.

APPENDIX

The appendix includes supporting information related to piezoelectric road technology for better understanding of the review.

Working Principle:

Mechanical stress produced by moving vehicles causes deformation of piezoelectric materials, generating electrical charge which is collected, rectified and stored for use.

Main Components:

Piezoelectric sensors, protective casing, wiring connections, rectifier circuit, storage battery and inverter (if required).

Applications:

Street lighting, traffic signals, parking systems, display boards and small monitoring devices.

Advantages:

Renewable energy source, utilization of wasted mechanical energy, low transmission loss and support for smart city infrastructure.

Limitations:

High installation cost, maintenance requirements, sensor durability and limited power output.

ACKNOWLEDGMENT

The authors express their sincere gratitude to the faculty members and guides for their valuable guidance and support during the preparation of this review paper. Their suggestions and encouragement helped in improving the quality of the study.

The authors also thank the institute library and online research databases for providing access to journals and reference materials required for collecting literature related to piezoelectric road technology. Finally, appreciation is extended to all contributors who directly or indirectly assisted in completing this work successfully.

REFERENCES

[1] K. Mou, X. Ji, J. Liu, H. Zhou, H. Tian and X. Li, “Using piezoelectric technology to harvest energy from pavement: A review,” *Journal of Traffic and Transportation Engineering*, 2025.

[2] G. S. Priestner and H. Nouri, “Evaluation of road traffic energy harvesting using piezoelectricity,” *Review of Energy Technologies and Policy Research*, 2017.

[3] R. A. Powar and A. S. Manjarekar, “A review on energy harvesting from roads (Piezoelectric Roads),” *International Journal of Innovative Research in Technology*, 2021.

[4] Y. Pradhan, G. Vitkar, R. Kamble and S. Janjal, “Design of road pavement using piezoelectric harvester – A review,” *EPRA International Journal of Multidisciplinary Research*, 2024.

[5] D. Zhao, J. M. Ling and P. C. Fu, “A review of harvesting green energy from road,” *Advanced Materials Research*, 2013.

[6] H. Xiong, L. Zhang and Q. Li, “Piezoelectric energy harvesting from road traffic: A feasibility study,” *Renewable Energy*, 2023.

[7] T. Zhao et al., “Energy harvesting from traffic systems using piezoelectric materials,” *IEEE Transactions on Smart Grid*, 2020.

[8] R. Kumar and S. Patel, “Piezoelectric Road surfaces for smart cities,” *International Conference on Eco-friendly Infrastructure*, 2021.

[9] M. Gupta and P. Singh, “Performance analysis of piezoelectric roads,” *Journal of Transportation Engineering*, 2019.

[10] IEEE Smart Infrastructure Reports, “Energy harvesting road technologies,” 2022.